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M. Baczyński, FSTA 2012 •First •Prev •Next •Last •Go Back •Full Screen •Close Page 3

In the classical logic we have the following tautology:

(p ∧ q) 7→ r ≡ (p 7→ r) ∨ (q 7→ r).
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In the classical logic we have the following tautology:

(p ∧ q) 7→ r ≡ (p 7→ r) ∨ (q 7→ r).

If we consider a generalization of this formula in (classical) fuzzy logic, then we obtain
the following functional equation

I(T (x, y), z) = S(I(x, z), I(y, z)), x, y, z ∈ [0, 1], (1)

where

T : [0, 1]2 → [0, 1] is some extension of classical conjunction (t-norm)

S : [0, 1]2 → [0, 1] is some extension of classical disjunction (t-conorm)

I : [0, 1]2 → [0, 1] is some extension of classical implication (fuzzy implication)
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In the classical logic we have the following tautology:

(p ∧ q) 7→ r ≡ (p 7→ r) ∨ (q 7→ r).

If we consider a generalization of this formula in (classical) fuzzy logic, then we obtain
the following functional equation

I(T (x, y), z) = S(I(x, z), I(y, z)), x, y, z ∈ [0, 1], (1)

where

T : [0, 1]2 → [0, 1] is some extension of classical conjunction (t-norm)

S : [0, 1]2 → [0, 1] is some extension of classical disjunction (t-conorm)

I : [0, 1]2 → [0, 1] is some extension of classical implication (fuzzy implication)

W.E. Combs, J.E. Andrews (1998): Combinatorial rule explosion eliminated
by a fuzzy rule configuration, IEEE Trans. Fuzzy Systems 6, 1–11 (1998)

They refer to the left-hand side of this equivalence as an intersection rule configuration
(IRC) and to its right-hand side as a union rule configuration (URC).
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S. Dick, A. Kandel (1999): Comments on “Combinatorial rule explosion
eliminated by a fuzzy rule configuration”, IEEE Trans. Fuzzy Syst. 7, 475–477:

“Future work on this issue will require an examination of the properties of
various combinations of fuzzy unions, intersections and implications.”
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S. Dick, A. Kandel (1999): Comments on “Combinatorial rule explosion
eliminated by a fuzzy rule configuration”, IEEE Trans. Fuzzy Syst. 7, 475–477:

“Future work on this issue will require an examination of the properties of
various combinations of fuzzy unions, intersections and implications.”

J.M. Mendel, Q. Liang (1999): Comments on “Combinatorial rule explosion
eliminated by a fuzzy rule configuration”, IEEE Trans. Fuzzy Syst. 7, 369–371:

“We think that what this all means is that we have to look past the mathe-
matics of IRC⇔URC and inquire whether what we are doing when we replace
IRC by URC makes sense.”



M. Baczyński, FSTA 2012 •First •Prev •Next •Last •Go Back •Full Screen •Close Page 5

Aczél (1966): general solutions of the distributive equation

F (x,G(y, z)) = G(F (x, z), F (y, z)),

when F is continuous and G is continuous, strictly increasing and associative.
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Aczél (1966): general solutions of the distributive equation

F (x,G(y, z)) = G(F (x, z), F (y, z)),

when F is continuous and G is continuous, strictly increasing and associative.

E. Trillas & C. Alsina, (2002): On the Law [p ∧ q → r] = [(p→ r) ∨ (q → r)]
in Fuzzy Logic, IEEE Trans. Fuzzy Syst. 10, 84–88.
Investigations on the equation (1):

I(T (x, y), z) = S(I(x, z), I(y, z)), x, y, z ∈ [0, 1],

in the case when T is a t-norm, S is a t-conorm and I is a fuzzy implication.
In the case of

• R-implications generated from left-continuous t-norms

• S-implications

the equation (1) holds if and only if T = min and S = max.
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We can consider other distributive laws for the classical implication:

(p ∨ q) 7→ r ≡ (p 7→ r) ∧ (q 7→ r)

p 7→ (q ∧ r) ≡ (p 7→ q) ∧ (p 7→ r)

p 7→ (q ∨ r) ≡ (p 7→ q) ∨ (p 7→ r)
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We can consider other distributive laws for the classical implication:

(p ∨ q) 7→ r ≡ (p 7→ r) ∧ (q 7→ r)

p 7→ (q ∧ r) ≡ (p 7→ q) ∧ (p 7→ r)

p 7→ (q ∨ r) ≡ (p 7→ q) ∨ (p 7→ r)

All above equalities can be transformed to the functional equations of Pexider type:

I1(T (x, y), z) = S(I2(x, z), I3(y, z)) (D1)

I1(S(x, y), z) = T (I2(x, z), I3(y, z)) (D2)

I1(x, T1(y, z)) = T2(I2(x, y), I3(x, z)) (D3)

I1(x, S1(y, z)) = S2(I2(x, y), I3(x, z)) (D4)
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Baczyński (2001, 2002): Eq. (D3) when T1 = T2 is a strict t-norm

Jayaram & Rao (2004): Eqs. (D2) – (D4) for R-implications and S-implications.
In almost all the cases the distributivity holds only when T1 = T2 = T = min and
S1 = S2 = S = max

Ruiz-Aguilera & Torrens (2005, 2007): Distributivity of different classes of fuzzy
implications over different classes of uninorms

Qin & Zhao (2005): Distributive equations for idempotent uninorms and nullnorms

Baczyński & Jayaram (2007, 2008, 2010): Distributivity of fuzzy implications
over continuous Archimedean t-norms and t-conorms

Drewniak & Rak (2009): Subdistributivity and superdistributivity of binary op.

Baczyński (2010): Distributivity of fuzzy implications over representable uninorms

Qin & Yang (2010): Distributivity of fuzzy implications over nilpotent t-norms

Baczyński & Qin (2011): Distributivity of fuzzy implications over continuous
t-norms
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MAIN GOAL

The distributivity equations in:

• Atanassov’s intuitionistic fuzzy sets theory

• in interval-valued fuzzy sets theory.
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MAIN GOAL

The distributivity equations in:

• Atanassov’s intuitionistic fuzzy sets theory

• in interval-valued fuzzy sets theory.

THIS CONTRIBUTION

Solutions of the following distributive equation

I(x, T1(y, z)) = T2(I(x, y), I(x, z))

for t-representable t-norms in interval-valued fuzzy sets theory.
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Definition 1 (Atanassov, 1999).

An (Atanassov’s) intuitionistic fuzzy set A on X is a set

A = {(x, µA(x), νA(x)) : x ∈ X},

where µA, νA : X → [0, 1] are called, respectively, the membership function and the
non-membership function. Moreover, they satisfy the condition

µA(x) + νA(x) ≤ 1, x ∈ X.
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Definition 1 (Atanassov, 1999).

An (Atanassov’s) intuitionistic fuzzy set A on X is a set

A = {(x, µA(x), νA(x)) : x ∈ X},

where µA, νA : X → [0, 1] are called, respectively, the membership function and the
non-membership function. Moreover, they satisfy the condition

µA(x) + νA(x) ≤ 1, x ∈ X.

An (Atanassov’s) intuitionistic fuzzy set A on X can be represented by the L∗-fuzzy
set A in the sense of Goguen given by

A : X → L∗

x 7→ (µA(x), νA(x)), x ∈ X,

where L∗ = (L∗,≤L∗) is the following complete lattice

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1}
(x1, x2) ≤L∗ (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≥ y2

with the units 0L∗ = (0, 1) and 1L∗ = (1, 0).
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Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced,
independently, by Sambuc (1975) & Gorza lczany (1987).
We define LI = (LI,≤LI), where

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2}
(x1, x2) ≤LI (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2
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Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced,
independently, by Sambuc (1975) & Gorza lczany (1987).
We define LI = (LI,≤LI), where

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2}
(x1, x2) ≤LI (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2

In the sequel, if x ∈ LI , then we denote it by x = [x1, x2].
LI is a complete lattice with units 0LI = [0, 0] and 1LI = [1, 1].

Definition 2. An interval-valued fuzzy set on X is a mapping A : X → LI .

An interval-valued fuzzy set can be seen as a LI-fuzzy set in the sense of Goguen.



M. Baczyński, FSTA 2012 •First •Prev •Next •Last •Go Back •Full Screen •Close Page 10

Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced,
independently, by Sambuc (1975) & Gorza lczany (1987).
We define LI = (LI,≤LI), where

LI = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2}
(x1, x2) ≤LI (y1, y2)⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2

In the sequel, if x ∈ LI , then we denote it by x = [x1, x2].
LI is a complete lattice with units 0LI = [0, 0] and 1LI = [1, 1].

Definition 2. An interval-valued fuzzy set on X is a mapping A : X → LI .

An interval-valued fuzzy set can be seen as a LI-fuzzy set in the sense of Goguen.

Deschrijver & Kerre (2003): Atanassov’s intuitionistic fuzzy sets can be seen as
interval-valued fuzzy sets (and vice-versa).

In our talk we develop our investigations in the terms of LI = (LI,≤LI), since the main
results are easier to obtain and to show.
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Definition 3. Let L = (L,≤L) be a complete lattice. An associative, commutative
operation T : L2 → L is called a t-norm on L if it is increasing and 1L is the neutral
element of T .
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Definition 3. Let L = (L,≤L) be a complete lattice. An associative, commutative
operation T : L2 → L is called a t-norm on L if it is increasing and 1L is the neutral
element of T .

T-norms on LI

T-norms on LI can be defined in many ways. In our talk we consider only the following
special class of t-norms.

Definition 4.

A t-norm T on LI is called t-representable if there exist t-norms T1 and T2 on ([0, 1],≤)
such that T1 ≤ T2 and

T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)], [x1, x2], [y1, y2] ∈ LI.
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Definition 3. Let L = (L,≤L) be a complete lattice. An associative, commutative
operation T : L2 → L is called a t-norm on L if it is increasing and 1L is the neutral
element of T .

T-norms on LI

T-norms on LI can be defined in many ways. In our talk we consider only the following
special class of t-norms.

Definition 4.

A t-norm T on LI is called t-representable if there exist t-norms T1 and T2 on ([0, 1],≤)
such that T1 ≤ T2 and

T ([x1, x2], [y1, y2]) = [T1(x1, y1), T2(x2, y2)], [x1, x2], [y1, y2] ∈ LI.

It should be noted that not all t-norms on LI are t-representable.
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Definition 5 (Kitainik (1993); Fodor & Roubens (1994)).

Let L = (L,≤L) be a complete lattice. A function I : L2 → L is called a
fuzzy implication on L if

• it is decreasing with respect to the first variable,

• it is increasing with respect to the second variable

• it fulfills the following conditions:

I(0L, 0L) = I(1L, 1L) = 1L, I(1L, 0L) = 0L.
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Definition 5 (Kitainik (1993); Fodor & Roubens (1994)).

Let L = (L,≤L) be a complete lattice. A function I : L2 → L is called a
fuzzy implication on L if

• it is decreasing with respect to the first variable,

• it is increasing with respect to the second variable

• it fulfills the following conditions:

I(0L, 0L) = I(1L, 1L) = 1L, I(1L, 0L) = 0L.

Directly from the above definition we can deduce that each implication I on L satisfies
also the normality condition I(0L, 1L) = 1L. Consequently, every implication restricted
to the set {0L, 1L}2 coincides with the classical implication.

When L = ([0, 1],≤), then I is called a fuzzy implication,

When L = LI , then I is called an interval-valued fuzzy implication.
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Main equation

I(x, T1(y, z)) = T2(I(x, y), I(x, z)) (2)

when t-norms T1 = (T1, T2) and T2 = (T3, T4) on LI are t-representable.
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Main equation

I(x, T1(y, z)) = T2(I(x, y), I(x, z)) (2)

when t-norms T1 = (T1, T2) and T2 = (T3, T4) on LI are t-representable.

Assume that projection mappings on LI are defined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2, for [x1, x2] ∈ LI.
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Main equation

I(x, T1(y, z)) = T2(I(x, y), I(x, z)) (2)

when t-norms T1 = (T1, T2) and T2 = (T3, T4) on LI are t-representable.

Assume that projection mappings on LI are defined as the following:

pr1([x1, x2]) = x1, pr2([x1, x2]) = x2, for [x1, x2] ∈ LI.

At this situation our distributive equation has the following form

I([x1, x2],[T1(y1, z1), T2(y2, z2)])

=[T3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

T4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))],

for all [x1, x2], [y1, y2], [z1, z2] ∈ LI .
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pr1(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

pr2(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))
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pr1(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

pr2(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))

Now, let us fix arbitrarily [x1, x2] ∈ LI and define two functions LI → LI by

g1[x1,x2](·) := pr1 ◦ I([x1, x2], ·), g2[x1,x2](·) := pr2 ◦ I([x1, x2], ·).
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pr1(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

pr2(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))

Now, let us fix arbitrarily [x1, x2] ∈ LI and define two functions LI → LI by

g1[x1,x2](·) := pr1 ◦ I([x1, x2], ·), g2[x1,x2](·) := pr2 ◦ I([x1, x2], ·).

Then we get the following two equations

g1[x1,x2]([T1(y1, z1), T2(y2, z2)]) = T3(g
1
[x1,x2]

([y1, y2]), g
1
[x1,x2]

([z1, z2])),

g2[x1,x2]([T1(y1, z1), T2(y2, z2)]) = T4(g
2
[x1,x2]

([y1, y2]), g
2
[x1,x2]

([z1, z2])).
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pr1(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T3(pr1(I([x1, x2], [y1, y2])), pr1(I([x1, x2], [z1, z2]))),

pr2(I([x1, x2],[T1(y1, z1), T2(y2, z2)]))

= T4(pr2(I([x1, x2], [y1, y2])), pr2(I([x1, x2], [z1, z2])))

Now, let us fix arbitrarily [x1, x2] ∈ LI and define two functions LI → LI by

g1[x1,x2](·) := pr1 ◦ I([x1, x2], ·), g2[x1,x2](·) := pr2 ◦ I([x1, x2], ·).

Then we get the following two equations

g1[x1,x2]([T1(y1, z1), T2(y2, z2)]) = T3(g
1
[x1,x2]

([y1, y2]), g
1
[x1,x2]

([z1, z2])),

g2[x1,x2]([T1(y1, z1), T2(y2, z2)]) = T4(g
2
[x1,x2]

([y1, y2]), g
2
[x1,x2]

([z1, z2])).

When T1 = T2 = T3 = T4, then in both cases we have the bisymmetry equation.
The continuous and strictly increasing solutions are known even for domain LI

(Kocsis (2007): A bisymmetry equation on restricted domain).
But in our investigation t-norms are not strictly increasing on the whole domain.
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We have solved (almost completely) this problem for the case when T1 = T2

and T3 = T4 are continuous and Archimedean t-norms on unit interval.
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We have solved (almost completely) this problem for the case when T1 = T2

and T3 = T4 are continuous and Archimedean t-norms on unit interval.

Theorem 1. A function T : [0, 1]2 → [0, 1] is a nilpotent t-norm if and only if there
exists a continuous, strictly decreasing function t : [0, 1]→ [0,∞) with t(1) = 0, which
is uniquely determined up to a positive multiplicative constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1].
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We can transform our problem to the following equation (we deal only with g1):

g1[x1,x2]([t
−1
1 (min(t1(y1) + t1(z1), t1(0))), t

−1
1 (min(t1(y2) + t1(z2), t1(0)))])

= t−13 (min(t3(g
1
[x1,x2]

([y1, y2])) + t3(g
1
[x1,x2]

([z1, z2])), t3(0))).
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We can transform our problem to the following equation (we deal only with g1):

g1[x1,x2]([t
−1
1 (min(t1(y1) + t1(z1), t1(0))), t

−1
1 (min(t1(y2) + t1(z2), t1(0)))])

= t−13 (min(t3(g
1
[x1,x2]

([y1, y2])) + t3(g
1
[x1,x2]

([z1, z2])), t3(0))).

Hence

t3 ◦ g1[x1,x2]([t
−1
1 (min(t1(y1) + t1(z1), t1(0))), t

−1
1 (min(t1(y2) + t1(z2), t1(0)))])

= min(t3 ◦ g1[x1,x2]([y1, y2]) + t3 ◦ g1[x1,x2]([z1, z2]), t3(0)).
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We can transform our problem to the following equation (we deal only with g1):

g1[x1,x2]([t
−1
1 (min(t1(y1) + t1(z1), t1(0))), t

−1
1 (min(t1(y2) + t1(z2), t1(0)))])

= t−13 (min(t3(g
1
[x1,x2]

([y1, y2])) + t3(g
1
[x1,x2]

([z1, z2])), t3(0))).

Hence

t3 ◦ g1[x1,x2]([t
−1
1 (min(t1(y1) + t1(z1), t1(0))), t

−1
1 (min(t1(y2) + t1(z2), t1(0)))])

= min(t3 ◦ g1[x1,x2]([y1, y2]) + t3 ◦ g1[x1,x2]([z1, z2]), t3(0)).

Let La = {(u1, u2) ∈ [0, a]2 : u1 ≥ u2}, for real a > 0.

Let us put t1(y1) = u1, t1(y2) = u2, t1(z1) = v1 and t1(z2) = v2.

[y1, y2], [z1, z2] ∈ LI =⇒ (u1, u2), (v1, v2) ∈ Lt1(0)
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If we put
f[x1,x2](u, v) := t3 ◦ pr1 ◦ I([x1, x2], [t

−1
1 (u), t−11 (v)]),

where u, v ∈ [0, t1(0)], u ≥ v, then we get the following functional equation

f[x1,x2](min(u1 + v1, t1(0)),min(u2 + v2, t1(0)))

= min(f[x1,x2](u1, u2) + f[x1,x2](v1, v2), t3(0)),

satisfied for all (u1, u2), (v1, v2) ∈ Lt1(0). Of course function f[x1,x2] : L
t1(0) → [0, t3(0)]

is unknown above.
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If we put
f[x1,x2](u, v) := t3 ◦ pr1 ◦ I([x1, x2], [t

−1
1 (u), t−11 (v)]),

where u, v ∈ [0, t1(0)], u ≥ v, then we get the following functional equation

f[x1,x2](min(u1 + v1, t1(0)),min(u2 + v2, t1(0)))

= min(f[x1,x2](u1, u2) + f[x1,x2](v1, v2), t3(0)),

satisfied for all (u1, u2), (v1, v2) ∈ Lt1(0). Of course function f[x1,x2] : L
t1(0) → [0, t3(0)]

is unknown above.

In a same way we can repeat all the above calculations, but for the function g2, to
obtain the following functional equation

f [x1,x2](min(u1 + v1, t1(0)),min(u2 + v2, t1(0)))

= min(f [x1,x2](u1, u2) + f [x1,x2](v1, v2), t3(0)),

satisfied for all (u1, u2), (v1, v2) ∈ Lt1(0), where

f [x1,x2](u, v) := t3 ◦ pr2 ◦ I([x1, x2], [t
−1
1 (u), t−11 (v)])

is an unknown function.
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Results pertaining to functional equations

L∞ = {(u1, u2) ∈ [0,∞]2 | u1 ≥ u2}

La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}
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Results pertaining to functional equations

L∞ = {(u1, u2) ∈ [0,∞]2 | u1 ≥ u2}

La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}

Solutions when T1 = T2 and T3 = T4 are strict t-norms

f (u1 + v1, u2 + v2) = f (u1, u2) + f (v1, v2) (3)

f : L∞ → [0,∞] is an unknown function.
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Results pertaining to functional equations

L∞ = {(u1, u2) ∈ [0,∞]2 | u1 ≥ u2}

La = {(u1, u2) ∈ [0, a]2 | u1 ≥ u2}

Solutions when T1 = T2 and T3 = T4 are strict t-norms

f (u1 + v1, u2 + v2) = f (u1, u2) + f (v1, v2) (3)

f : L∞ → [0,∞] is an unknown function.

Solutions when T1 = T2 and T3 = T4 are nilpotent t-norms

h(min(u1 + v1, a),min(u2 + v2, a)) = min(h(u1, u2) + h(v1, v2), b) (4)

h : La → [0, b] is an unknown function.
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Solutions when T1 = T2 is a nilpotent t-norm and T3 = T4 is a strict t-norm

g(min(u1 + v1, a),min(u2 + v2, a)) = g(u1, u2) + g(v1, v2) (5)

g : La → [0,∞] is an unknown function.
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Solutions when T1 = T2 is a nilpotent t-norm and T3 = T4 is a strict t-norm

g(min(u1 + v1, a),min(u2 + v2, a)) = g(u1, u2) + g(v1, v2) (5)

g : La → [0,∞] is an unknown function.

Solutions when T1 = T2 is a strict t-norm and T3 = T4 is a nilptent t-norm

k(u1 + v1, u2 + v2) = min(k(u1, u2) + k(v1, v2), b) (6)

k : L∞ → [0, b] is an unknown function.
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Proposition 1 (Baczyński, Jayaram (2009)).

Fix real a, b > 0. For a function f : [0, a] → [0, b] the following statements are
equivalent:

(i) f satisfies the functional equation

f (min(x + y, a)) = min(f (x) + f (y), b), x, y ∈ [0, a].

(ii) Either f = 0, or f = b, or f (x) =

{
0, if x = 0,

b, if x > 0,
, or there exists a unique constant

c ∈
[
b
a
,∞
)

such that f (x) = min(cx, b), for all x ∈ [0, a].
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Main results

I(x, T1(y, z)) = T2(I(x, y), I(x, z))

Using this method we are able to solve our main equation when t-norms T1 = (T1, T2)
and T2 = (T3, T4) on LI are t-representable and such that T1 = T2 and T3 = T4 are
continuous and Archmidean t-norms.
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Main results

I(x, T1(y, z)) = T2(I(x, y), I(x, z))

Using this method we are able to solve our main equation when t-norms T1 = (T1, T2)
and T2 = (T3, T4) on LI are t-representable and such that T1 = T2 and T3 = T4 are
continuous and Archmidean t-norms.

FURTHER WORK IN THIS TOPIC

• Detailed description of all correct solutions

• Other distributive equations on LI for t-representable operations

• Other classes of t-norms

• Possible applications
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Thank You for the attention!


