FSTA 2012 February 2, 2012 Liptovský Jan, the Slovak Republic

Distributivity of implications over t-representable operations in interval-valued fuzzy sets theory

Michał Baczyński

University of Silesia, Katowice, Poland

M. Baczyński, FSTA 2012

OUTLINE

- Motivation and historical background
- Basic definitions and preliminary results
- Main equation for t-representable t-norms
- Some results pertaining to functional equations
- Conclusion and further work

M. Baczyński, FSTA 2012

In the classical logic we have the following tautology:

$$(p \wedge q) \mapsto r \equiv (p \mapsto r) \lor (q \mapsto r).$$

In the classical logic we have the following tautology:

$$(p \wedge q) \mapsto r \equiv (p \mapsto r) \vee (q \mapsto r).$$

If we consider a generalization of this formula in (classical) fuzzy logic, then we obtain the following functional equation

$$I(T(x,y),z) = S(I(x,z), I(y,z)), x, y, z \in [0,1], (1)$$

where

$$\begin{split} T\colon [0,1]^2 &\to [0,1] \text{ is some extension of classical conjunction (t-norm)} \\ S\colon [0,1]^2 &\to [0,1] \text{ is some extension of classical disjunction (t-conorm)} \\ I\colon [0,1]^2 &\to [0,1] \text{ is some extension of classical implication (fuzzy implication)} \end{split}$$

In the classical logic we have the following tautology:

$$(p \wedge q) \mapsto r \equiv (p \mapsto r) \vee (q \mapsto r).$$

If we consider a generalization of this formula in (classical) fuzzy logic, then we obtain the following functional equation

$$I(T(x,y),z) = S(I(x,z), I(y,z)), \qquad x, y, z \in [0,1],$$
(1)

where

$$\begin{split} T\colon [0,1]^2 &\to [0,1] \text{ is some extension of classical conjunction (t-norm)} \\ S\colon [0,1]^2 &\to [0,1] \text{ is some extension of classical disjunction (t-conorm)} \\ I\colon [0,1]^2 &\to [0,1] \text{ is some extension of classical implication (fuzzy implication)} \end{split}$$

W.E. Combs, J.E. Andrews (1998): Combinatorial rule explosion eliminated by a fuzzy rule configuration, *IEEE Trans. Fuzzy Systems* 6, 1–11 (1998) They refer to the left-hand side of this equivalence as an intersection rule configuration (IRC) and to its right-hand side as a union rule configuration (URC).

S. Dick, A. Kandel (1999): Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration", *IEEE Trans. Fuzzy Syst.* 7, 475–477:

"Future work on this issue will require an examination of the properties of various combinations of fuzzy unions, intersections and implications."

S. Dick, A. Kandel (1999): Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration", *IEEE Trans. Fuzzy Syst.* 7, 475–477:

"Future work on this issue will require an examination of the properties of various combinations of fuzzy unions, intersections and implications."

J.M. Mendel, Q. Liang (1999): Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration", *IEEE Trans. Fuzzy Syst.* 7, 369–371:

"We think that what this all means is that we have to look past the mathematics of IRC \Leftrightarrow URC and inquire whether what we are doing when we replace IRC by URC makes sense."

M. Baczyński, FSTA 2012

Aczél (1966): general solutions of the distributive equation

$$F(x,G(y,z))=G(F(x,z),F(y,z)),$$

when F is continuous and G is continuous, strictly increasing and associative.

Aczél (1966): general solutions of the distributive equation

$$F(x,G(y,z)) = G(F(x,z),F(y,z)),$$

when F is continuous and G is continuous, strictly increasing and associative.

E. Trillas & C. Alsina, (2002): On the Law $[p \land q \rightarrow r] = [(p \rightarrow r) \lor (q \rightarrow r)]$ **in Fuzzy Logic**, *IEEE Trans. Fuzzy Syst.* 10, 84–88. Investigations on the equation (1):

$$I(T(x,y),z)=S(I(x,z),I(y,z)), \qquad x,y,z\in [0,1],$$

in the case when T is a t-norm, S is a t-conorm and I is a fuzzy implication. In the case of

- R-implications generated from left-continuous t-norms
- S-implications

the equation (1) holds if and only if $T = \min$ and $S = \max$.

M. Baczyński, FSTA 2012

We can consider other distributive laws for the classical implication:

$$\begin{array}{l} (p \lor q) \mapsto r \equiv (p \mapsto r) \land (q \mapsto r) \\ p \mapsto (q \land r) \equiv (p \mapsto q) \land (p \mapsto r) \\ p \mapsto (q \lor r) \equiv (p \mapsto q) \lor (p \mapsto r) \end{array}$$

We can consider other distributive laws for the classical implication:

$$\begin{array}{l} (p \lor q) \mapsto r \equiv (p \mapsto r) \land (q \mapsto r) \\ p \mapsto (q \land r) \equiv (p \mapsto q) \land (p \mapsto r) \\ p \mapsto (q \lor r) \equiv (p \mapsto q) \lor (p \mapsto r) \end{array}$$

All above equalities can be transformed to the functional equations of Pexider type:

$$\begin{split} I_1(T(x,y),z) &= S(I_2(x,z),I_3(y,z)) & \text{(D1)}\\ I_1(S(x,y),z) &= T(I_2(x,z),I_3(y,z)) & \text{(D2)}\\ I_1(x,T_1(y,z)) &= T_2(I_2(x,y),I_3(x,z)) & \text{(D3)}\\ I_1(x,S_1(y,z)) &= S_2(I_2(x,y),I_3(x,z)) & \text{(D4)} \end{split}$$

M. Baczyński, FSTA 2012

Baczyński (2001, 2002): Eq. (D3) when $T_1 = T_2$ is a strict t-norm

Jayaram & Rao (2004): Eqs. (D2) – (D4) for R-implications and S-implications. In almost all the cases the distributivity holds only when $T_1 = T_2 = T = \min$ and $S_1 = S_2 = S = \max$

Ruiz-Aguilera & Torrens (2005, 2007): Distributivity of different classes of fuzzy implications over different classes of uninorms

Qin & Zhao (2005): Distributive equations for idempotent uninorms and nullnorms

Baczyński & Jayaram (2007, 2008, 2010): Distributivity of fuzzy implications over continuous Archimedean t-norms and t-conorms

Drewniak & Rak (2009): Subdistributivity and superdistributivity of binary op.

Baczyński (2010): Distributivity of fuzzy implications over representable uninorms

Qin & Yang (2010): Distributivity of fuzzy implications over nilpotent t-norms

Baczyński & Qin (2011): Distributivity of fuzzy implications over continuous t-norms M. Baczyński, FSTA 2012 *First Prev Next Last Go Back Full Screen Close* Page 7

MAIN GOAL

The distributivity equations in:

- Atanassov's intuitionistic fuzzy sets theory
- in interval-valued fuzzy sets theory.

MAIN GOAL

The distributivity equations in:

- Atanassov's intuitionistic fuzzy sets theory
- in interval-valued fuzzy sets theory.

THIS CONTRIBUTION

Solutions of the following distributive equation

$$\mathcal{I}(x, \mathcal{T}_1(y, z)) = \mathcal{T}_2(\mathcal{I}(x, y), \mathcal{I}(x, z))$$

for t-representable t-norms in interval-valued fuzzy sets theory.

M. Baczyński, FSTA 2012

Definition 1 (Atanassov, 1999).

An (Atanassov's) intuitionistic fuzzy set A on X is a set

$$A = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \},\$$

where μ_A , $\nu_A \colon X \to [0,1]$ are called, respectively, the membership function and the non-membership function. Moreover, they satisfy the condition

$$\mu_A(x) + \nu_A(x) \le 1, \qquad x \in X.$$

Definition 1 (Atanassov, 1999).

An (Atanassov's) intuitionistic fuzzy set A on X is a set

$$A = \{ (x, \mu_A(x), \nu_A(x)) : x \in X \},\$$

where μ_A , $\nu_A \colon X \to [0,1]$ are called, respectively, the membership function and the non-membership function. Moreover, they satisfy the condition

$$\mu_A(x) + \nu_A(x) \le 1, \qquad x \in X.$$

An (Atanassov's) intuitionistic fuzzy set A on X can be represented by the \mathcal{L}^* -fuzzy set A in the sense of Goguen given by

$$A: X \to L^*$$

 $x \mapsto (\mu_A(x), \nu_A(x)), \qquad x \in X,$

where $\mathcal{L}^* = (L^*, \leq_{L^*})$ is the following complete lattice

$$L^* = \{ (x_1, x_2) \in [0, 1]^2 : x_1 + x_2 \le 1 \}$$

$$(x_1, x_2) \le_{L^*} (y_1, y_2) \iff x_1 \le y_1 \land x_2 \ge y_2$$

with the units $0_{L^*} = (0, 1)$ and $1_{L^*} = (1, 0)$.

M. Baczyński, FSTA 2012

Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced, independently, by **Sambuc (1975) & Gorzałczany (1987)**. We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}})$, where

 $L^{I} = \{ (x_{1}, x_{2}) \in [0, 1]^{2} : x_{1} \le x_{2} \}$ $(x_{1}, x_{2}) \le_{L^{I}} (y_{1}, y_{2}) \Longleftrightarrow x_{1} \le y_{1} \land x_{2} \le y_{2}$

Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced, independently, by **Sambuc (1975) & Gorzałczany (1987)**. We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}})$, where

 $L^{I} = \{ (x_{1}, x_{2}) \in [0, 1]^{2} : x_{1} \le x_{2} \}$ $(x_{1}, x_{2}) \le_{L^{I}} (y_{1}, y_{2}) \Longleftrightarrow x_{1} \le y_{1} \land x_{2} \le y_{2}$

In the sequel, if $x \in L^{I}$, then we denote it by $x = [x_{1}, x_{2}]$. \mathcal{L}^{I} is a complete lattice with units $0_{\mathcal{L}^{I}} = [0, 0]$ and $1_{\mathcal{L}^{I}} = [1, 1]$.

Definition 2. An interval-valued fuzzy set on X is a mapping $A: X \to L^{I}$.

An interval-valued fuzzy set can be seen as a \mathcal{L}^{I} -fuzzy set in the sense of Goguen.

Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced, independently, by **Sambuc (1975) & Gorzałczany (1987)**. We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}})$, where

 $L^{I} = \{ (x_{1}, x_{2}) \in [0, 1]^{2} : x_{1} \leq x_{2} \}$ $(x_{1}, x_{2}) \leq_{L^{I}} (y_{1}, y_{2}) \iff x_{1} \leq y_{1} \wedge x_{2} \leq y_{2}$

In the sequel, if $x \in L^{I}$, then we denote it by $x = [x_{1}, x_{2}]$. \mathcal{L}^{I} is a complete lattice with units $0_{\mathcal{L}^{I}} = [0, 0]$ and $1_{\mathcal{L}^{I}} = [1, 1]$.

Definition 2. An interval-valued fuzzy set on X is a mapping $A: X \to L^{I}$.

An interval-valued fuzzy set can be seen as a \mathcal{L}^{I} -fuzzy set in the sense of Goguen.

Deschrijver & Kerre (2003): Atanassov's intuitionistic fuzzy sets can be seen as interval-valued fuzzy sets (and vice-versa).

In our talk we develop our investigations in the terms of $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}})$, since the main results are easier to obtain and to show.

Definition 3. Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice. An associative, commutative operation $\mathcal{T} \colon L^2 \to L$ is called a t-norm on \mathcal{L} if it is increasing and $1_{\mathcal{L}}$ is the neutral element of \mathcal{T} .

Definition 3. Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice. An associative, commutative operation $\mathcal{T} \colon L^2 \to L$ is called a t-norm on \mathcal{L} if it is increasing and $1_{\mathcal{L}}$ is the neutral element of \mathcal{T} .

T-norms on \mathcal{L}^{I}

T-norms on \mathcal{L}^{I} can be defined in many ways. In our talk we consider only the following special class of t-norms.

Definition 4.

A t-norm \mathcal{T} on \mathcal{L}^I is called t-representable if there exist t-norms T_1 and T_2 on $([0,1],\leq)$ such that $T_1 \leq T_2$ and

 $\mathcal{T}([x_1, x_2], [y_1, y_2]) = [T_1(x_1, y_1), T_2(x_2, y_2)], \qquad [x_1, x_2], [y_1, y_2] \in L^I.$

M. Baczyński, FSTA 2012

Definition 3. Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice. An associative, commutative operation $\mathcal{T} \colon L^2 \to L$ is called a t-norm on \mathcal{L} if it is increasing and $1_{\mathcal{L}}$ is the neutral element of \mathcal{T} .

T-norms on \mathcal{L}^{I}

T-norms on \mathcal{L}^{I} can be defined in many ways. In our talk we consider only the following special class of t-norms.

Definition 4.

A t-norm \mathcal{T} on \mathcal{L}^I is called t-representable if there exist t-norms T_1 and T_2 on $([0,1],\leq)$ such that $T_1 \leq T_2$ and

 $\mathcal{T}([x_1, x_2], [y_1, y_2]) = [T_1(x_1, y_1), T_2(x_2, y_2)], \qquad [x_1, x_2], [y_1, y_2] \in L^I.$

It should be noted that not all t-norms on \mathcal{L}^{I} are t-representable.

M. Baczyński, FSTA 2012

Definition 5 (Kitainik (1993); Fodor & Roubens (1994)).

Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice. A function $\mathcal{I} \colon L^2 \to L$ is called a fuzzy implication on \mathcal{L} if

- it is decreasing with respect to the first variable,
- it is increasing with respect to the second variable
- it fulfills the following conditions:

$$\mathcal{I}(0_{\mathcal{L}}, 0_{\mathcal{L}}) = \mathcal{I}(1_{\mathcal{L}}, 1_{\mathcal{L}}) = 1_{\mathcal{L}}, \qquad \mathcal{I}(1_{\mathcal{L}}, 0_{\mathcal{L}}) = 0_{\mathcal{L}}.$$

Definition 5 (Kitainik (1993); Fodor & Roubens (1994)).

Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice. A function $\mathcal{I} \colon L^2 \to L$ is called a fuzzy implication on \mathcal{L} if

- it is decreasing with respect to the first variable,
- it is increasing with respect to the second variable
- it fulfills the following conditions:

$$\mathcal{I}(0_{\mathcal{L}}, 0_{\mathcal{L}}) = \mathcal{I}(1_{\mathcal{L}}, 1_{\mathcal{L}}) = 1_{\mathcal{L}}, \qquad \mathcal{I}(1_{\mathcal{L}}, 0_{\mathcal{L}}) = 0_{\mathcal{L}}.$$

Directly from the above definition we can deduce that each implication \mathcal{I} on \mathcal{L} satisfies also the normality condition $\mathcal{I}(0_{\mathcal{L}}, 1_{\mathcal{L}}) = 1_{\mathcal{L}}$. Consequently, every implication restricted to the set $\{0_{\mathcal{L}}, 1_{\mathcal{L}}\}^2$ coincides with the classical implication.

When $\mathcal{L} = ([0, 1], \leq)$, then \mathcal{I} is called a fuzzy implication,

When $\mathcal{L} = \mathcal{L}^{I}$, then \mathcal{I} is called an interval-valued fuzzy implication.

M. Baczyński, FSTA 2012

Main equation

$$\mathcal{I}(x, \mathcal{T}_1(y, z)) = \mathcal{T}_2(\mathcal{I}(x, y), \mathcal{I}(x, z))$$

when t-norms $\mathcal{T}_1 = (T_1, T_2)$ and $\mathcal{T}_2 = (T_3, T_4)$ on \mathcal{L}^I are t-representable.

(2)

Main equation

$$\mathcal{I}(x, \mathcal{T}_1(y, z)) = \mathcal{T}_2(\mathcal{I}(x, y), \mathcal{I}(x, z))$$

when t-norms $\mathcal{T}_1 = (T_1, T_2)$ and $\mathcal{T}_2 = (T_3, T_4)$ on \mathcal{L}^I are t-representable.

Assume that projection mappings on \mathcal{L}^{I} are defined as the following:

$$pr_1([x_1, x_2]) = x_1, \qquad pr_2([x_1, x_2]) = x_2, \qquad \text{for } [x_1, x_2] \in L^I.$$

(2)

Main equation

$$\mathcal{I}(x, \mathcal{T}_1(y, z)) = \mathcal{T}_2(\mathcal{I}(x, y), \mathcal{I}(x, z))$$

when t-norms $\mathcal{T}_1 = (T_1, T_2)$ and $\mathcal{T}_2 = (T_3, T_4)$ on \mathcal{L}^I are t-representable.

Assume that projection mappings on \mathcal{L}^{I} are defined as the following:

$$pr_1([x_1, x_2]) = x_1, \qquad pr_2([x_1, x_2]) = x_2, \qquad \text{for } [x_1, x_2] \in L^I.$$

At this situation our distributive equation has the following form

$$\begin{split} \mathcal{I}([x_1, x_2], &[T_1(y_1, z_1), T_2(y_2, z_2)]) \\ = &[T_3(pr_1(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_1(\mathcal{I}([x_1, x_2], [z_1, z_2]))), \\ &T_4(pr_2(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_2(\mathcal{I}([x_1, x_2], [z_1, z_2])))], \end{split}$$

for all $[x_1, x_2], [y_1, y_2], [z_1, z_2] \in L^I$.

M. Baczyński, FSTA 2012

(2)

 $\begin{aligned} pr_1(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) &= T_3(pr_1(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_1(\mathcal{I}([x_1, x_2], [z_1, z_2]))), \\ pr_2(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) &= T_4(pr_2(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_2(\mathcal{I}([x_1, x_2], [z_1, z_2]))) \end{aligned}$

$$\begin{aligned} pr_1(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) \\ &= T_3(pr_1(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_1(\mathcal{I}([x_1, x_2], [z_1, z_2]))), \\ pr_2(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) \\ &= T_4(pr_2(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_2(\mathcal{I}([x_1, x_2], [z_1, z_2]))) \end{aligned}$$

Now, let us fix arbitrarily $[x_1,x_2]\in L^I$ and define two functions $L^I\rightarrow L^I$ by

$$g_{[x_1,x_2]}^1(\cdot) := pr_1 \circ \mathcal{I}([x_1,x_2],\cdot), \qquad g_{[x_1,x_2]}^2(\cdot) := pr_2 \circ \mathcal{I}([x_1,x_2],\cdot).$$

$$\begin{aligned} pr_1(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) \\ &= T_3(pr_1(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_1(\mathcal{I}([x_1, x_2], [z_1, z_2]))), \\ pr_2(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) \\ &= T_4(pr_2(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_2(\mathcal{I}([x_1, x_2], [z_1, z_2]))) \end{aligned}$$

Now, let us fix arbitrarily $[x_1,x_2]\in L^I$ and define two functions $L^I\rightarrow L^I$ by

$$g_{[x_1,x_2]}^1(\cdot) := pr_1 \circ \mathcal{I}([x_1,x_2],\cdot), \qquad g_{[x_1,x_2]}^2(\cdot) := pr_2 \circ \mathcal{I}([x_1,x_2],\cdot).$$

Then we get the following two equations

$$\begin{split} g^1_{[x_1,x_2]}([T_1(y_1,z_1),T_2(y_2,z_2)]) &= T_3(g^1_{[x_1,x_2]}([y_1,y_2]),g^1_{[x_1,x_2]}([z_1,z_2])),\\ g^2_{[x_1,x_2]}([T_1(y_1,z_1),T_2(y_2,z_2)]) &= T_4(g^2_{[x_1,x_2]}([y_1,y_2]),g^2_{[x_1,x_2]}([z_1,z_2])). \end{split}$$

$$\begin{aligned} pr_1(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) \\ &= T_3(pr_1(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_1(\mathcal{I}([x_1, x_2], [z_1, z_2]))), \\ pr_2(\mathcal{I}([x_1, x_2], [T_1(y_1, z_1), T_2(y_2, z_2)])) \\ &= T_4(pr_2(\mathcal{I}([x_1, x_2], [y_1, y_2])), pr_2(\mathcal{I}([x_1, x_2], [z_1, z_2]))) \end{aligned}$$

Now, let us fix arbitrarily $[x_1, x_2] \in L^I$ and define two functions $L^I \to L^I$ by

$$g_{[x_1,x_2]}^1(\cdot) := pr_1 \circ \mathcal{I}([x_1,x_2],\cdot), \qquad g_{[x_1,x_2]}^2(\cdot) := pr_2 \circ \mathcal{I}([x_1,x_2],\cdot).$$

Then we get the following two equations

$$\begin{split} g^1_{[x_1,x_2]}([T_1(y_1,z_1),T_2(y_2,z_2)]) &= T_3(g^1_{[x_1,x_2]}([y_1,y_2]),g^1_{[x_1,x_2]}([z_1,z_2])),\\ g^2_{[x_1,x_2]}([T_1(y_1,z_1),T_2(y_2,z_2)]) &= T_4(g^2_{[x_1,x_2]}([y_1,y_2]),g^2_{[x_1,x_2]}([z_1,z_2])). \end{split}$$

When $T_1 = T_2 = T_3 = T_4$, then in both cases we have the bisymmetry equation. The continuous and strictly increasing solutions are known even for domain L^I (Kocsis (2007): A bisymmetry equation on restricted domain). But in our investigation t-norms are not strictly increasing on the whole domain.

We have solved (almost completely) this problem for the case when $T_1 = T_2$ and $T_3 = T_4$ are continuous and Archimedean t-norms on unit interval. We have solved (almost completely) this problem for the case when $T_1 = T_2$ and $T_3 = T_4$ are continuous and Archimedean t-norms on unit interval.

Theorem 1. A function $T: [0,1]^2 \rightarrow [0,1]$ is a nilpotent t-norm if and only if there exists a continuous, strictly decreasing function $t: [0,1] \rightarrow [0,\infty)$ with t(1) = 0, which is uniquely determined up to a positive multiplicative constant, such that

 $T(x,y) = t^{-1}(\min(t(x) + t(y), t(0))), \qquad x, y \in [0,1].$

M. Baczyński, FSTA 2012

We can transform our problem to the following equation (we deal only with g^1):

$$g_{[x_1,x_2]}^1([t_1^{-1}(\min(t_1(y_1) + t_1(z_1), t_1(0))), t_1^{-1}(\min(t_1(y_2) + t_1(z_2), t_1(0)))]) = t_3^{-1}(\min(t_3(g_{[x_1,x_2]}^1([y_1,y_2])) + t_3(g_{[x_1,x_2]}^1([z_1,z_2])), t_3(0))).$$

M. Baczyński, FSTA 2012

We can transform our problem to the following equation (we deal only with g^1):

$$g_{[x_1,x_2]}^1([t_1^{-1}(\min(t_1(y_1) + t_1(z_1), t_1(0))), t_1^{-1}(\min(t_1(y_2) + t_1(z_2), t_1(0)))]) = t_3^{-1}(\min(t_3(g_{[x_1,x_2]}^1([y_1, y_2])) + t_3(g_{[x_1,x_2]}^1([z_1, z_2])), t_3(0))).$$

Hence

$$t_3 \circ g^1_{[x_1,x_2]}([t_1^{-1}(\min(t_1(y_1) + t_1(z_1), t_1(0))), t_1^{-1}(\min(t_1(y_2) + t_1(z_2), t_1(0)))]) \\= \min(t_3 \circ g^1_{[x_1,x_2]}([y_1,y_2]) + t_3 \circ g^1_{[x_1,x_2]}([z_1,z_2]), t_3(0)).$$

M. Baczyński, FSTA 2012

We can transform our problem to the following equation (we deal only with g^1):

$$g_{[x_1,x_2]}^1([t_1^{-1}(\min(t_1(y_1) + t_1(z_1), t_1(0))), t_1^{-1}(\min(t_1(y_2) + t_1(z_2), t_1(0)))]) = t_3^{-1}(\min(t_3(g_{[x_1,x_2]}^1([y_1, y_2])) + t_3(g_{[x_1,x_2]}^1([z_1, z_2])), t_3(0))).$$

Hence

$$t_3 \circ g^1_{[x_1,x_2]}([t_1^{-1}(\min(t_1(y_1) + t_1(z_1), t_1(0))), t_1^{-1}(\min(t_1(y_2) + t_1(z_2), t_1(0)))]) \\ = \min(t_3 \circ g^1_{[x_1,x_2]}([y_1,y_2]) + t_3 \circ g^1_{[x_1,x_2]}([z_1,z_2]), t_3(0)).$$

Let $L^a = \{(u_1, u_2) \in [0, a]^2 : u_1 \ge u_2\}$, for real a > 0. Let us put $t_1(y_1) = u_1$, $t_1(y_2) = u_2$, $t_1(z_1) = v_1$ and $t_1(z_2) = v_2$.

$$[y_1, y_2], [z_1, z_2] \in L^I \Longrightarrow (u_1, u_2), (v_1, v_2) \in L^{t_1(0)}$$

M. Baczyński, FSTA 2012

If we put

$$f_{[x_1,x_2]}(u,v) := t_3 \circ pr_1 \circ \mathcal{I}([x_1,x_2],[t_1^{-1}(u),t_1^{-1}(v)]),$$

where $u, v \in [0, t_1(0)], u \ge v$, then we get the following functional equation

$$f_{[x_1,x_2]}(\min(u_1+v_1,t_1(0)),\min(u_2+v_2,t_1(0)))$$

= min(f_{[x_1,x_2]}(u_1,u_2) + f_{[x_1,x_2]}(v_1,v_2),t_3(0)),

satisfied for all $(u_1, u_2), (v_1, v_2) \in L^{t_1(0)}$. Of course function $f_{[x_1, x_2]} \colon L^{t_1(0)} \to [0, t_3(0)]$ is unknown above.

If we put

$$f_{[x_1,x_2]}(u,v) := t_3 \circ pr_1 \circ \mathcal{I}([x_1,x_2],[t_1^{-1}(u),t_1^{-1}(v)]),$$

where $u, v \in [0, t_1(0)], u \ge v$, then we get the following functional equation

$$f_{[x_1,x_2]}(\min(u_1+v_1,t_1(0)),\min(u_2+v_2,t_1(0)))$$

= min(f_{[x_1,x_2]}(u_1,u_2) + f_{[x_1,x_2]}(v_1,v_2),t_3(0)),

satisfied for all $(u_1, u_2), (v_1, v_2) \in L^{t_1(0)}$. Of course function $f_{[x_1, x_2]} \colon L^{t_1(0)} \to [0, t_3(0)]$ is unknown above.

In a same way we can repeat all the above calculations, but for the function g^2 , to obtain the following functional equation

$$f^{[x_1,x_2]}(\min(u_1+v_1,t_1(0)),\min(u_2+v_2,t_1(0))) = \min(f^{[x_1,x_2]}(u_1,u_2) + f^{[x_1,x_2]}(v_1,v_2),t_3(0)),$$

satisfied for all $(u_1, u_2), (v_1, v_2) \in L^{t_1(0)}$, where

$$f^{[x_1,x_2]}(u,v) := t_3 \circ pr_2 \circ \mathcal{I}([x_1,x_2],[t_1^{-1}(u),t_1^{-1}(v)])$$

is an unknown function.

M. Baczyński, FSTA 2012

Results pertaining to functional equations

 $L^{\infty} = \{ (u_1, u_2) \in [0, \infty]^2 \mid u_1 \ge u_2 \}$ $L^a = \{ (u_1, u_2) \in [0, a]^2 \mid u_1 \ge u_2 \}$

Results pertaining to functional equations

$$L^{\infty} = \{ (u_1, u_2) \in [0, \infty]^2 \mid u_1 \ge u_2 \}$$
$$L^a = \{ (u_1, u_2) \in [0, a]^2 \mid u_1 \ge u_2 \}$$

Solutions when $T_1 = T_2$ and $T_3 = T_4$ are strict t-norms

$$f(u_1 + v_1, u_2 + v_2) = f(u_1, u_2) + f(v_1, v_2)$$

 $f \colon L^{\infty} \to [0,\infty]$ is an unknown function.

(3)

Results pertaining to functional equations

$$L^{\infty} = \{ (u_1, u_2) \in [0, \infty]^2 \mid u_1 \ge u_2 \}$$
$$L^a = \{ (u_1, u_2) \in [0, a]^2 \mid u_1 \ge u_2 \}$$

Solutions when $T_1 = T_2$ and $T_3 = T_4$ are strict t-norms

$$f(u_1 + v_1, u_2 + v_2) = f(u_1, u_2) + f(v_1, v_2)$$
(3)

 $f\colon L^\infty \to [0,\infty]$ is an unknown function.

Solutions when $T_1 = T_2$ and $T_3 = T_4$ are nilpotent t-norms

$$h(\min(u_1 + v_1, a), \min(u_2 + v_2, a)) = \min(h(u_1, u_2) + h(v_1, v_2), b)$$
(4)

 $h \colon L^a \to [0, b]$ is an unknown function.

M. Baczyński, FSTA 2012

Solutions when $T_1 = T_2$ is a nilpotent t-norm and $T_3 = T_4$ is a strict t-norm

$$g(\min(u_1 + v_1, a), \min(u_2 + v_2, a)) = g(u_1, u_2) + g(v_1, v_2)$$

$$g: L^a \to [0, \infty] \text{ is an unknown function.}$$
(5)

Solutions when $T_1 = T_2$ is a nilpotent t-norm and $T_3 = T_4$ is a strict t-norm

$$g(\min(u_1 + v_1, a), \min(u_2 + v_2, a)) = g(u_1, u_2) + g(v_1, v_2)$$

$$g: L^a \to [0, \infty] \text{ is an unknown function.}$$
(5)

Solutions when $T_1 = T_2$ is a strict t-norm and $T_3 = T_4$ is a nilptent t-norm

$$k(u_1 + v_1, u_2 + v_2) = \min(k(u_1, u_2) + k(v_1, v_2), b)$$
(6)

 $k \colon L^{\infty} \to [0, b]$ is an unknown function.

M. Baczyński, FSTA 2012

Proposition 1 (Baczyński, Jayaram (2009)).

Fix real a, b > 0. For a function $f: [0, a] \rightarrow [0, b]$ the following statements are equivalent:

(i) f satisfies the functional equation

$$f(\min(x+y,a)) = \min(f(x) + f(y), b), \qquad x, y \in [0,a]$$

(ii) Either f = 0, or f = b, or $f(x) = \begin{cases} 0, & \text{if } x = 0, \\ b, & \text{if } x > 0, \end{cases}$, or there exists a unique constant $c \in \left[\frac{b}{a}, \infty\right)$ such that $f(x) = \min(cx, b)$, for all $x \in [0, a]$.

Main results

$$\mathcal{I}(x, \mathcal{T}_1(y, z)) = \mathcal{T}_2(\mathcal{I}(x, y), \mathcal{I}(x, z))$$

Using this method we are able to solve our main equation when t-norms $\mathcal{T}_1 = (T_1, T_2)$ and $\mathcal{T}_2 = (T_3, T_4)$ on \mathcal{L}^I are t-representable and such that $T_1 = T_2$ and $T_3 = T_4$ are continuous and Archmidean t-norms.

Main results

$$\mathcal{I}(x, \mathcal{T}_1(y, z)) = \mathcal{T}_2(\mathcal{I}(x, y), \mathcal{I}(x, z))$$

Using this method we are able to solve our main equation when t-norms $\mathcal{T}_1 = (T_1, T_2)$ and $\mathcal{T}_2 = (T_3, T_4)$ on \mathcal{L}^I are t-representable and such that $T_1 = T_2$ and $T_3 = T_4$ are continuous and Archmidean t-norms.

FURTHER WORK IN THIS TOPIC

- Detailed description of all correct solutions
- Other distributive equations on \mathcal{L}^{I} for t-representable operations
- Other classes of t-norms
- Possible applications

M. Baczyński, FSTA 2012

Thank You for the attention!

M. Baczyński, FSTA 2012