FSTA 2012
February 2, 2012
Liptovský Jan, the Slovak Republic

Distributivity of implications over t-representable operations in interval-valued fuzzy sets theory

Michał Baczyński
University of Silesia, Katowice, Poland

OUTLINE

- Motivation and historical background
- Basic definitions and preliminary results
- Main equation for t-representable t-norms
- Some results pertaining to functional equations
- Conclusion and further work

In the classical logic we have the following tautology:

$$
(p \wedge q) \mapsto r \equiv(p \mapsto r) \vee(q \mapsto r)
$$

In the classical logic we have the following tautology:

$$
(p \wedge q) \mapsto r \equiv(p \mapsto r) \vee(q \mapsto r) .
$$

If we consider a generalization of this formula in (classical) fuzzy logic, then we obtain the following functional equation

$$
\begin{equation*}
I(T(x, y), z)=S(I(x, z), I(y, z)), \quad x, y, z \in[0,1] \tag{1}
\end{equation*}
$$

where
$T:[0,1]^{2} \rightarrow[0,1]$ is some extension of classical conjunction (t -norm)
$S:[0,1]^{2} \rightarrow[0,1]$ is some extension of classical disjunction (t-conorm)
$I:[0,1]^{2} \rightarrow[0,1]$ is some extension of classical implication (fuzzy implication)

In the classical logic we have the following tautology:

$$
(p \wedge q) \mapsto r \equiv(p \mapsto r) \vee(q \mapsto r) .
$$

If we consider a generalization of this formula in (classical) fuzzy logic, then we obtain the following functional equation

$$
\begin{equation*}
I(T(x, y), z)=S(I(x, z), I(y, z)), \quad x, y, z \in[0,1] \tag{1}
\end{equation*}
$$

where
$T:[0,1]^{2} \rightarrow[0,1]$ is some extension of classical conjunction (t -norm)
$S:[0,1]^{2} \rightarrow[0,1]$ is some extension of classical disjunction (t -conorm)
$I:[0,1]^{2} \rightarrow[0,1]$ is some extension of classical implication (fuzzy implication)
W.E. Combs, J.E. Andrews (1998): Combinatorial rule explosion eliminated by a fuzzy rule configuration, IEEE Trans. Fuzzy Systems 6, 1-11 (1998)
They refer to the left-hand side of this equivalence as an intersection rule configuration (IRC) and to its right-hand side as a union rule configuration (URC).
S. Dick, A. Kandel (1999): Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration", IEEE Trans. Fuzzy Syst. 7, 475-477:
"Future work on this issue will require an examination of the properties of various combinations of fuzzy unions, intersections and implications."
S. Dick, A. Kandel (1999): Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration", IEEE Trans. Fuzzy Syst. 7, 475-477:
"Future work on this issue will require an examination of the properties of various combinations of fuzzy unions, intersections and implications."
J.M. Mendel, Q. Liang (1999): Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration", IEEE Trans. Fuzzy Syst. 7, 369-371:
"We think that what this all means is that we have to look past the mathematics of IRC $\Leftrightarrow U R C$ and inquire whether what we are doing when we replace IRC by URC makes sense."

Aczél (1966): general solutions of the distributive equation

$$
F(x, G(y, z))=G(F(x, z), F(y, z)),
$$

when F is continuous and G is continuous, strictly increasing and associative.

Aczél (1966): general solutions of the distributive equation

$$
F(x, G(y, z))=G(F(x, z), F(y, z)),
$$

when F is continuous and G is continuous, strictly increasing and associative.
E. Trillas \& C. Alsina, (2002): On the Law $[p \wedge q \rightarrow r]=[(p \rightarrow r) \vee(q \rightarrow r)]$ in Fuzzy Logic, IEEE Trans. Fuzzy Syst. 10, 84-88. Investigations on the equation (1):

$$
I(T(x, y), z)=S(I(x, z), I(y, z)), \quad x, y, z \in[0,1]
$$

in the case when T is a t-norm, S is a t -conorm and I is a fuzzy implication. In the case of

- R-implications generated from left-continuous t-norms
- S-implications
the equation (1) holds if and only if $T=\min$ and $S=\max$.

We can consider other distributive laws for the classical implication:

$$
\begin{aligned}
& (p \vee q) \mapsto r \equiv(p \mapsto r) \wedge(q \mapsto r) \\
& p \mapsto(q \wedge r) \equiv(p \mapsto q) \wedge(p \mapsto r) \\
& p \mapsto(q \vee r) \equiv(p \mapsto q) \vee(p \mapsto r)
\end{aligned}
$$

We can consider other distributive laws for the classical implication:

$$
\begin{aligned}
& (p \vee q) \mapsto r \equiv(p \mapsto r) \wedge(q \mapsto r) \\
& p \mapsto(q \wedge r) \equiv(p \mapsto q) \wedge(p \mapsto r) \\
& p \mapsto(q \vee r) \equiv(p \mapsto q) \vee(p \mapsto r)
\end{aligned}
$$

All above equalities can be transformed to the functional equations of Pexider type:

$$
\begin{align*}
I_{1}(T(x, y), z) & =S\left(I_{2}(x, z), I_{3}(y, z)\right) \tag{D1}\\
I_{1}(S(x, y), z) & =T\left(I_{2}(x, z), I_{3}(y, z)\right) \tag{D2}\\
I_{1}\left(x, T_{1}(y, z)\right) & =T_{2}\left(I_{2}(x, y), I_{3}(x, z)\right) \tag{D3}\\
I_{1}\left(x, S_{1}(y, z)\right) & =S_{2}\left(I_{2}(x, y), I_{3}(x, z)\right) \tag{D4}
\end{align*}
$$

Baczyński (2001, 2002): Eq. (D3) when $T_{1}=T_{2}$ is a strict t-norm
Jayaram \& Rao (2004): Eqs. (D2) - (D4) for R-implications and S-implications. In almost all the cases the distributivity holds only when $T_{1}=T_{2}=T=\mathrm{min}$ and $S_{1}=S_{2}=S=\max$

Ruiz-Aguilera \& Torrens (2005, 2007): Distributivity of different classes of fuzzy implications over different classes of uninorms

Qin \& Zhao (2005): Distributive equations for idempotent uninorms and nullnorms
Baczyński \& Jayaram (2007, 2008, 2010): Distributivity of fuzzy implications over continuous Archimedean t-norms and t-conorms

Drewniak \& Rak (2009): Subdistributivity and superdistributivity of binary op.
Baczyński (2010): Distributivity of fuzzy implications over representable uninorms
Qin \& Yang (2010): Distributivity of fuzzy implications over nilpotent t-norms
Baczyński \& Qin (2011): Distributivity of fuzzy implications over continuous t-norms
M. Baczyński, FSTA 2012

MAIN GOAL

The distributivity equations in:

- Atanassov's intuitionistic fuzzy sets theory
- in interval-valued fuzzy sets theory.

MAIN GOAL

The distributivity equations in:

- Atanassov's intuitionistic fuzzy sets theory
- in interval-valued fuzzy sets theory.

THIS CONTRIBUTION

Solutions of the following distributive equation

$$
\mathcal{I}\left(x, \mathcal{T}_{1}(y, z)\right)=\mathcal{T}_{2}(\mathcal{I}(x, y), \mathcal{I}(x, z))
$$

for t-representable t-norms in interval-valued fuzzy sets theory.

Definition 1 (Atanassov, 1999).

An (Atanassov's) intuitionistic fuzzy set A on X is a set

$$
A=\left\{\left(x, \mu_{A}(x), \nu_{A}(x)\right): \quad x \in X\right\},
$$

where $\mu_{A}, \nu_{A}: X \rightarrow[0,1]$ are called, respectively, the membership function and the non-membership function. Moreover, they satisfy the condition

$$
\mu_{A}(x)+\nu_{A}(x) \leq 1, \quad x \in X .
$$

Definition 1 (Atanassov, 1999).

An (Atanassov's) intuitionistic fuzzy set A on X is a set

$$
A=\left\{\left(x, \mu_{A}(x), \nu_{A}(x)\right): \quad x \in X\right\},
$$

where $\mu_{A}, \nu_{A}: X \rightarrow[0,1]$ are called, respectively, the membership function and the non-membership function. Moreover, they satisfy the condition

$$
\mu_{A}(x)+\nu_{A}(x) \leq 1, \quad x \in X
$$

An (Atanassov's) intuitionistic fuzzy set A on X can be represented by the \mathcal{L}^{*}-fuzzy set A in the sense of Goguen given by

$$
\begin{aligned}
A: & X
\end{aligned} \rightarrow L^{*} \quad x \in\left(\mu_{A}(x), \nu_{A}(x)\right), \quad x \in X, \quad x
$$

where $\mathcal{L}^{*}=\left(L^{*}, \leq_{L^{*}}\right)$ is the following complete lattice

$$
\begin{gathered}
L^{*}=\left\{\left(x_{1}, x_{2}\right) \in[0,1]^{2}: x_{1}+x_{2} \leq 1\right\} \\
\left(x_{1}, x_{2}\right) \leq_{L^{*}}\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} \leq y_{1} \wedge x_{2} \geq y_{2}
\end{gathered}
$$

with the units $0_{L^{*}}=(0,1)$ and $1_{L^{*}}=(1,0)$.

Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced, independently, by Sambuc (1975) \& Gorzałczany (1987).
We define $\mathcal{L}^{I}=\left(L^{I}, \leq_{L^{I}}\right)$, where

$$
\begin{aligned}
& L^{I}=\left\{\left(x_{1}, x_{2}\right) \in[0,1]^{2}: x_{1} \leq x_{2}\right\} \\
& \left(x_{1}, x_{2}\right) \leq_{L^{I}}\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} \leq y_{1} \wedge x_{2} \leq y_{2}
\end{aligned}
$$

Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced, independently, by Sambuc (1975) \& Gorzatczany (1987).
We define $\mathcal{L}^{I}=\left(L^{I}, \leq_{L^{I}}\right)$, where

$$
\begin{aligned}
L^{I} & =\left\{\left(x_{1}, x_{2}\right) \in[0,1]^{2}: x_{1} \leq x_{2}\right\} \\
\left(x_{1}, x_{2}\right) & \leq_{L^{I}}\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} \leq y_{1} \wedge x_{2} \leq y_{2}
\end{aligned}
$$

In the sequel, if $x \in L^{I}$, then we denote it by $x=\left[x_{1}, x_{2}\right]$.
\mathcal{L}^{I} is a complete lattice with units $0_{\mathcal{L}^{I}}=[0,0]$ and $1_{\mathcal{L}^{I}}=[1,1]$.
Definition 2. An interval-valued fuzzy set on X is a mapping $A: X \rightarrow L^{I}$.
An interval-valued fuzzy set can be seen as a \mathcal{L}^{I}-fuzzy set in the sense of Goguen.

Another extension of the fuzzy sets theory is interval-valued fuzzy sets theory introduced, independently, by Sambuc (1975) \& Gorzałczany (1987).
We define $\mathcal{L}^{I}=\left(L^{I}, \leq_{L^{I}}\right)$, where

$$
\begin{aligned}
L^{I} & =\left\{\left(x_{1}, x_{2}\right) \in[0,1]^{2}: x_{1} \leq x_{2}\right\} \\
\left(x_{1}, x_{2}\right) & \leq_{L^{I}}\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} \leq y_{1} \wedge x_{2} \leq y_{2}
\end{aligned}
$$

In the sequel, if $x \in L^{I}$, then we denote it by $x=\left[x_{1}, x_{2}\right]$.
\mathcal{L}^{I} is a complete lattice with units $0_{\mathcal{L}^{I}}=[0,0]$ and $1_{\mathcal{L}^{I}}=[1,1]$.
Definition 2. An interval-valued fuzzy set on X is a mapping $A: X \rightarrow L^{I}$.
An interval-valued fuzzy set can be seen as a \mathcal{L}^{I}-fuzzy set in the sense of Goguen.
Deschrijver \& Kerre (2003): Atanassov's intuitionistic fuzzy sets can be seen as interval-valued fuzzy sets (and vice-versa).

In our talk we develop our investigations in the terms of $\mathcal{L}^{I}=\left(L^{I}, \leq_{L^{I}}\right)$, since the main results are easier to obtain and to show.

Definition 3. Let $\mathcal{L}=\left(L, \leq_{L}\right)$ be a complete lattice. An associative, commutative operation $\mathcal{T}: L^{2} \rightarrow L$ is called a t-norm on \mathcal{L} if it is increasing and $1_{\mathcal{L}}$ is the neutral element of \mathcal{T}.

Definition 3. Let $\mathcal{L}=\left(L, \leq_{L}\right)$ be a complete lattice. An associative, commutative operation $\mathcal{T}: L^{2} \rightarrow L$ is called a t-norm on \mathcal{L} if it is increasing and $1_{\mathcal{L}}$ is the neutral element of \mathcal{T}.

$$
\text { T-norms on } \mathcal{L}^{I}
$$

T-norms on \mathcal{L}^{I} can be defined in many ways. In our talk we consider only the following special class of t -norms.

Definition 4.

A t-norm \mathcal{T} on \mathcal{L}^{I} is called t-representable if there exist t -norms T_{1} and T_{2} on $([0,1], \leq)$ such that $T_{1} \leq T_{2}$ and

$$
\mathcal{T}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(x_{2}, y_{2}\right)\right], \quad\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right] \in L^{I} .
$$

Definition 3. Let $\mathcal{L}=\left(L, \leq_{L}\right)$ be a complete lattice. An associative, commutative operation $\mathcal{T}: L^{2} \rightarrow L$ is called a t-norm on \mathcal{L} if it is increasing and $1_{\mathcal{L}}$ is the neutral element of \mathcal{T}.

$$
\text { T-norms on } \mathcal{L}^{I}
$$

T-norms on \mathcal{L}^{I} can be defined in many ways. In our talk we consider only the following special class of t -norms.

Definition 4.

A t-norm \mathcal{T} on \mathcal{L}^{I} is called t-representable if there exist t -norms T_{1} and T_{2} on $([0,1], \leq)$ such that $T_{1} \leq T_{2}$ and

$$
\mathcal{T}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)=\left[T_{1}\left(x_{1}, y_{1}\right), T_{2}\left(x_{2}, y_{2}\right)\right], \quad\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right] \in L^{I} .
$$

It should be noted that not all t-norms on \mathcal{L}^{I} are t -representable.

Definition 5 (Kitainik (1993); Fodor \& Roubens (1994)).
Let $\mathcal{L}=\left(L, \leq_{L}\right)$ be a complete lattice. A function $\mathcal{I}: L^{2} \rightarrow L$ is called a fuzzy implication on \mathcal{L} if

- it is decreasing with respect to the first variable,
- it is increasing with respect to the second variable
- it fulfills the following conditions:

$$
\mathcal{I}\left(0_{\mathcal{L}}, 0_{\mathcal{L}}\right)=\mathcal{I}\left(1_{\mathcal{L}}, 1_{\mathcal{L}}\right)=1_{\mathcal{L}}, \quad \mathcal{I}\left(1_{\mathcal{L}}, 0_{\mathcal{L}}\right)=0_{\mathcal{L}} .
$$

Definition 5 (Kitainik (1993); Fodor \& Roubens (1994)).
Let $\mathcal{L}=\left(L, \leq_{L}\right)$ be a complete lattice. A function $\mathcal{I}: L^{2} \rightarrow L$ is called a fuzzy implication on \mathcal{L} if

- it is decreasing with respect to the first variable,
- it is increasing with respect to the second variable
- it fulfills the following conditions:

$$
\mathcal{I}\left(0_{\mathcal{L}}, 0_{\mathcal{L}}\right)=\mathcal{I}\left(1_{\mathcal{L}}, 1_{\mathcal{L}}\right)=1_{\mathcal{L}}, \quad \mathcal{I}\left(1_{\mathcal{L}}, 0_{\mathcal{L}}\right)=0_{\mathcal{L}} .
$$

Directly from the above definition we can deduce that each implication \mathcal{I} on \mathcal{L} satisfies also the normality condition $\mathcal{I}\left(0_{\mathcal{L}}, 1_{\mathcal{L}}\right)=1_{\mathcal{L}}$. Consequently, every implication restricted to the set $\left\{0_{\mathcal{L}}, 1_{\mathcal{L}}\right\}^{2}$ coincides with the classical implication.

When $\mathcal{L}=([0,1], \leq)$, then \mathcal{I} is called a fuzzy implication,
When $\mathcal{L}=\mathcal{L}^{I}$, then \mathcal{I} is called an interval-valued fuzzy implication.

Main equation

$$
\begin{equation*}
\mathcal{I}\left(x, \mathcal{T}_{1}(y, z)\right)=\mathcal{T}_{2}(\mathcal{I}(x, y), \mathcal{I}(x, z)) \tag{2}
\end{equation*}
$$

when t-norms $\mathcal{T}_{1}=\left(T_{1}, T_{2}\right)$ and $\mathcal{T}_{2}=\left(T_{3}, T_{4}\right)$ on \mathcal{L}^{I} are t-representable.

Main equation

$$
\begin{equation*}
\mathcal{I}\left(x, \mathcal{T}_{1}(y, z)\right)=\mathcal{T}_{2}(\mathcal{I}(x, y), \mathcal{I}(x, z)) \tag{2}
\end{equation*}
$$

when t-norms $\mathcal{T}_{1}=\left(T_{1}, T_{2}\right)$ and $\mathcal{T}_{2}=\left(T_{3}, T_{4}\right)$ on \mathcal{L}^{I} are t-representable.
Assume that projection mappings on \mathcal{L}^{I} are defined as the following:

$$
\operatorname{pr}_{1}\left(\left[x_{1}, x_{2}\right]\right)=x_{1}, \quad \operatorname{pr}_{2}\left(\left[x_{1}, x_{2}\right]\right)=x_{2}, \quad \text { for }\left[x_{1}, x_{2}\right] \in L^{I}
$$

Main equation

$$
\begin{equation*}
\mathcal{I}\left(x, \mathcal{T}_{1}(y, z)\right)=\mathcal{T}_{2}(\mathcal{I}(x, y), \mathcal{I}(x, z)) \tag{2}
\end{equation*}
$$

when t-norms $\mathcal{T}_{1}=\left(T_{1}, T_{2}\right)$ and $\mathcal{T}_{2}=\left(T_{3}, T_{4}\right)$ on \mathcal{L}^{I} are t-representable.
Assume that projection mappings on \mathcal{L}^{I} are defined as the following:

$$
p r_{1}\left(\left[x_{1}, x_{2}\right]\right)=x_{1}, \quad \operatorname{pr} 2\left(\left[x_{1}, x_{2}\right]\right)=x_{2}, \quad \text { for }\left[x_{1}, x_{2}\right] \in L^{I} .
$$

At this situation our distributive equation has the following form

$$
\begin{aligned}
\mathcal{I}\left(\left[x_{1}, x_{2}\right],\right. & {\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right) } \\
= & {\left[T_{3}\left(p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), \operatorname{pr}_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right),\right.} \\
& \left.T_{4}\left(p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), \operatorname{pr}_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right)\right],
\end{aligned}
$$

for all $\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right] \in L^{I}$.

$$
\begin{aligned}
\operatorname{pr}_{1}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{3}\left(p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right) \\
\operatorname{pr}_{2}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{4}\left(p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{pr}_{1}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{3}\left(p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right) \\
\operatorname{pr}_{2}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{4}\left(p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right)
\end{aligned}
$$

Now, let us fix arbitrarily $\left[x_{1}, x_{2}\right] \in L^{I}$ and define two functions $L^{I} \rightarrow L^{I}$ by

$$
g_{\left[x_{1}, x_{2}\right]}^{1}(\cdot):=\operatorname{pr}_{1} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right], \cdot\right), \quad g_{\left[x_{1}, x_{2}\right]}^{2}(\cdot):=\operatorname{pr}_{2} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right], \cdot\right)
$$

$$
\begin{aligned}
\operatorname{pr}_{1}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{3}\left(p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right) \\
\operatorname{pr}_{2}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{4}\left(p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right)
\end{aligned}
$$

Now, let us fix arbitrarily $\left[x_{1}, x_{2}\right] \in L^{I}$ and define two functions $L^{I} \rightarrow L^{I}$ by

$$
g_{\left[x_{1}, x_{2}\right]}^{1}(\cdot):=p r_{1} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right], \cdot\right), \quad g_{\left[x_{1}, x_{2}\right]}^{2}(\cdot):=p r_{2} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right], \cdot\right)
$$

Then we get the following two equations

$$
\begin{aligned}
g_{\left[x_{1}, x_{2}\right]}^{1} \\
\left.\left.\left.g_{\left[x_{1}, x_{2}\right]}^{2}\left(\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)=T_{3}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)=T_{4}\left(g_{\left[x_{1}, x_{2}\right]}^{2}\left(\left[y_{1}, y_{2}\right]\right), g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{1}, y_{2}\right]\right), g_{\left[x_{1}, x_{2}\right]}^{2},\left[z_{2}\right]\right)\right), \\
\left.\left.\left.1, z_{2}\right]\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{pr}_{1}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{3}\left(p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{1}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right) \\
\operatorname{pr}_{2}\left(\mathcal { I } \left(\left[x_{1}, x_{2}\right],\right.\right. & {\left.\left.\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right)\right) } \\
& =T_{4}\left(p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right)\right), p r_{2}\left(\mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[z_{1}, z_{2}\right]\right)\right)\right)
\end{aligned}
$$

Now, let us fix arbitrarily $\left[x_{1}, x_{2}\right] \in L^{I}$ and define two functions $L^{I} \rightarrow L^{I}$ by

$$
g_{\left[x_{1}, x_{2}\right]}^{1}(\cdot):=\operatorname{pr}_{1} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right], \cdot\right), \quad g_{\left[x_{1}, x_{2}\right]}^{2}(\cdot):=\operatorname{pr}_{2} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right], \cdot\right)
$$

Then we get the following two equations

$$
\left.\begin{array}{rl}
g_{\left[x_{1}, x_{2}\right]}^{1} & \left(\left[T_{1}\left(y_{1}, z_{1}\right), T_{2}\left(y_{2}, z_{2}\right)\right]\right) \\
g_{\left[x_{1}, x_{2}\right]}^{2} & =T_{3}\left(g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{1}\left(y_{1}, y_{2}, z_{1}\right), T_{2}\right), g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{2}, z_{2}\right)\right]\right)=T_{4}\left(g_{\left[x_{1}, x_{2}\right]}^{2}\right]\right),
\end{array}\left(\left[y_{1}, y_{2}\right]\right), g_{\left[x_{1}, x_{2}\right]}^{2}\left(\left[z_{1}, z_{2}\right]\right)\right) .
$$

When $T_{1}=T_{2}=T_{3}=T_{4}$, then in both cases we have the bisymmetry equation. The continuous and strictly increasing solutions are known even for domain L^{I} (Kocsis (2007): A bisymmetry equation on restricted domain). But in our investigation t-norms are not strictly increasing on the whole domain.

We have solved (almost completely) this problem for the case when $T_{1}=T_{2}$ and $T_{3}=T_{4}$ are continuous and Archimedean t-norms on unit interval.

We have solved (almost completely) this problem for the case when $T_{1}=T_{2}$ and $T_{3}=T_{4}$ are continuous and Archimedean t-norms on unit interval.

Theorem 1. A function $T:[0,1]^{2} \rightarrow[0,1]$ is a nilpotent t-norm if and only if there exists a continuous, strictly decreasing function $t:[0,1] \rightarrow[0, \infty)$ with $t(1)=0$, which is uniquely determined up to a positive multiplicative constant, such that

$$
T(x, y)=t^{-1}(\min (t(x)+t(y), t(0))), \quad x, y \in[0,1] .
$$

We can transform our problem to the following equation (we deal only with g^{1}):

$$
\begin{aligned}
g_{\left[x_{1}, x_{2}\right]}^{1} & \left(\left[t_{1}^{-1}\left(\min \left(t_{1}\left(y_{1}\right)+t_{1}\left(z_{1}\right), t_{1}(0)\right)\right), t_{1}^{-1}\left(\min \left(t_{1}\left(y_{2}\right)+t_{1}\left(z_{2}\right), t_{1}(0)\right)\right)\right]\right) \\
& \left.\left.=t_{3}^{-1}\left(\min \left(t_{3}\left(g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{1}, y_{2}\right]\right)\right)+t_{3}\left(g_{\left[x_{1}, x_{2}\right]}^{1}\right]\left[z_{1}, z_{2}\right]\right)\right), t_{3}(0)\right)\right)
\end{aligned}
$$

We can transform our problem to the following equation (we deal only with g^{1}):

$$
\begin{aligned}
g_{\left[x_{1}, x_{2}\right]}^{1} & \left(\left[t_{1}^{-1}\left(\min \left(t_{1}\left(y_{1}\right)+t_{1}\left(z_{1}\right), t_{1}(0)\right)\right), t_{1}^{-1}\left(\min \left(t_{1}\left(y_{2}\right)+t_{1}\left(z_{2}\right), t_{1}(0)\right)\right)\right]\right) \\
& =t_{3}^{-1}\left(\min \left(t_{3}\left(g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{1}, y_{2}\right]\right)\right)+t_{3}\left(g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[z_{1}, z_{2}\right]\right)\right), t_{3}(0)\right)\right)
\end{aligned}
$$

Hence

$$
\begin{gathered}
t_{3} \circ g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[t_{1}^{-1}\left(\min \left(t_{1}\left(y_{1}\right)+t_{1}\left(z_{1}\right), t_{1}(0)\right)\right), t_{1}^{-1}\left(\min \left(t_{1}\left(y_{2}\right)+t_{1}\left(z_{2}\right), t_{1}(0)\right)\right)\right]\right) \\
=\min \left(t_{3} \circ g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{1}, y_{2}\right]\right)+t_{3} \circ g_{\left[x_{1}, z_{2}\right]}^{1}\left(\left[z_{1}, z_{2}\right]\right), t_{3}(0)\right) .
\end{gathered}
$$

We can transform our problem to the following equation (we deal only with g^{1}):

$$
\begin{aligned}
g_{\left[x_{1}, x_{2}\right]}^{1} & \left(\left[t_{1}^{-1}\left(\min \left(t_{1}\left(y_{1}\right)+t_{1}\left(z_{1}\right), t_{1}(0)\right)\right), t_{1}^{-1}\left(\min \left(t_{1}\left(y_{2}\right)+t_{1}\left(z_{2}\right), t_{1}(0)\right)\right)\right]\right) \\
& =t_{3}^{-1}\left(\min \left(t_{3}\left(g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{1}, y_{2}\right]\right)\right)+t_{3}\left(g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[z_{1}, z_{2}\right]\right)\right), t_{3}(0)\right)\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& t_{3} \circ g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[t_{1}^{-1}\left(\min \left(t_{1}\left(y_{1}\right)+t_{1}\left(z_{1}\right), t_{1}(0)\right)\right), t_{1}^{-1}\left(\min \left(t_{1}\left(y_{2}\right)+t_{1}\left(z_{2}\right), t_{1}(0)\right)\right)\right]\right) \\
&=\min \left(t_{3} \circ g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[y_{1}, y_{2}\right]\right)+t_{3} \circ g_{\left[x_{1}, x_{2}\right]}^{1}\left(\left[z_{1}, z_{2}\right]\right), t_{3}(0)\right) .
\end{aligned}
$$

Let $L^{a}=\left\{\left(u_{1}, u_{2}\right) \in[0, a]^{2}: u_{1} \geq u_{2}\right\}$, for real $a>0$.
Let us put $t_{1}\left(y_{1}\right)=u_{1}, t_{1}\left(y_{2}\right)=u_{2}, t_{1}\left(z_{1}\right)=v_{1}$ and $t_{1}\left(z_{2}\right)=v_{2}$.

$$
\left[y_{1}, y_{2}\right],\left[z_{1}, z_{2}\right] \in L^{I} \Longrightarrow\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in L^{t_{1}(0)}
$$

If we put

$$
f_{\left[x_{1}, x_{2}\right]}(u, v):=t_{3} \circ p r_{1} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[t_{1}^{-1}(u), t_{1}^{-1}(v)\right]\right),
$$

where $u, v \in\left[0, t_{1}(0)\right], u \geq v$, then we get the following functional equation

$$
\begin{aligned}
f_{\left[x_{1}, x_{2}\right]} & \left(\min \left(u_{1}+v_{1}, t_{1}(0)\right), \min \left(u_{2}+v_{2}, t_{1}(0)\right)\right) \\
& =\min \left(f_{\left[x_{1}, x_{2}\right]}\left(u_{1}, u_{2}\right)+f_{\left[x_{1}, x_{2}\right]}\left(v_{1}, v_{2}\right), t_{3}(0)\right),
\end{aligned}
$$

satisfied for all $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in L^{t_{1}(0)}$. Of course function $f_{\left[x_{1},,_{2}\right]}: L^{t_{1}(0)} \rightarrow\left[0, t_{3}(0)\right]$ is unknown above.

If we put

$$
f_{\left[x_{1}, x_{2}\right]}(u, v):=t_{3} \circ p r_{1} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[t_{1}^{-1}(u), t_{1}^{-1}(v)\right]\right),
$$

where $u, v \in\left[0, t_{1}(0)\right], u \geq v$, then we get the following functional equation

$$
\begin{aligned}
& f_{\left[x_{1}, x_{2}\right]}\left(\min \left(u_{1}+v_{1}, t_{1}(0)\right), \min \left(u_{2}+v_{2}, t_{1}(0)\right)\right) \\
& \quad=\min \left(f_{\left[x_{1}, x_{2}\right]}\left(u_{1}, u_{2}\right)+f_{\left[x_{1}, x_{2}\right]}\left(v_{1}, v_{2}\right), t_{3}(0)\right)
\end{aligned}
$$

satisfied for all $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in L^{t_{1}(0)}$. Of course function $f_{\left[x_{1}, x_{2}\right]}: L^{t_{1}(0)} \rightarrow\left[0, t_{3}(0)\right]$ is unknown above.

In a same way we can repeat all the above calculations, but for the function g^{2}, to obtain the following functional equation

$$
\begin{aligned}
& f^{\left[x_{1}, x_{2}\right]}\left(\min \left(u_{1}+v_{1}, t_{1}(0)\right), \min \left(u_{2}+v_{2}, t_{1}(0)\right)\right) \\
& \quad=\min \left(f^{\left[x_{1}, x_{2}\right]}\left(u_{1}, u_{2}\right)+f^{\left[x_{1}, x_{2}\right]}\left(v_{1}, v_{2}\right), t_{3}(0)\right)
\end{aligned}
$$

satisfied for all $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in L^{t_{1}(0)}$, where

$$
f^{\left[x_{1}, x_{2}\right]}(u, v):=t_{3} \circ p r_{2} \circ \mathcal{I}\left(\left[x_{1}, x_{2}\right],\left[t_{1}^{-1}(u), t_{1}^{-1}(v)\right]\right)
$$

is an unknown function.

Results pertaining to functional equations

$$
\begin{aligned}
& L^{\infty}=\left\{\left(u_{1}, u_{2}\right) \in[0, \infty]^{2} \mid u_{1} \geq u_{2}\right\} \\
& L^{a}=\left\{\left(u_{1}, u_{2}\right) \in[0, a]^{2} \mid u_{1} \geq u_{2}\right\}
\end{aligned}
$$

Results pertaining to functional equations

$$
\begin{aligned}
& L^{\infty}=\left\{\left(u_{1}, u_{2}\right) \in[0, \infty]^{2} \mid u_{1} \geq u_{2}\right\} \\
& L^{a}=\left\{\left(u_{1}, u_{2}\right) \in[0, a]^{2} \mid u_{1} \geq u_{2}\right\}
\end{aligned}
$$

Solutions when $T_{1}=T_{2}$ and $T_{3}=T_{4}$ are strict t-norms

$$
\begin{equation*}
f\left(u_{1}+v_{1}, u_{2}+v_{2}\right)=f\left(u_{1}, u_{2}\right)+f\left(v_{1}, v_{2}\right) \tag{3}
\end{equation*}
$$

$f: L^{\infty} \rightarrow[0, \infty]$ is an unknown function.

Results pertaining to functional equations

$$
\begin{aligned}
& L^{\infty}=\left\{\left(u_{1}, u_{2}\right) \in[0, \infty]^{2} \mid u_{1} \geq u_{2}\right\} \\
& L^{a}=\left\{\left(u_{1}, u_{2}\right) \in[0, a]^{2} \mid u_{1} \geq u_{2}\right\}
\end{aligned}
$$

Solutions when $T_{1}=T_{2}$ and $T_{3}=T_{4}$ are strict t -norms

$$
\begin{equation*}
f\left(u_{1}+v_{1}, u_{2}+v_{2}\right)=f\left(u_{1}, u_{2}\right)+f\left(v_{1}, v_{2}\right) \tag{3}
\end{equation*}
$$

$f: L^{\infty} \rightarrow[0, \infty]$ is an unknown function.

Solutions when $T_{1}=T_{2}$ and $T_{3}=T_{4}$ are nilpotent t-norms

$$
\begin{equation*}
h\left(\min \left(u_{1}+v_{1}, a\right), \min \left(u_{2}+v_{2}, a\right)\right)=\min \left(h\left(u_{1}, u_{2}\right)+h\left(v_{1}, v_{2}\right), b\right) \tag{4}
\end{equation*}
$$

$h: L^{a} \rightarrow[0, b]$ is an unknown function.

Solutions when $T_{1}=T_{2}$ is a nilpotent t -norm and $T_{3}=T_{4}$ is a strict t -norm

$$
\begin{equation*}
g\left(\min \left(u_{1}+v_{1}, a\right), \min \left(u_{2}+v_{2}, a\right)\right)=g\left(u_{1}, u_{2}\right)+g\left(v_{1}, v_{2}\right) \tag{5}
\end{equation*}
$$

$g: L^{a} \rightarrow[0, \infty]$ is an unknown function.

Solutions when $T_{1}=T_{2}$ is a nilpotent t-norm and $T_{3}=T_{4}$ is a strict t-norm

$$
\begin{equation*}
g\left(\min \left(u_{1}+v_{1}, a\right), \min \left(u_{2}+v_{2}, a\right)\right)=g\left(u_{1}, u_{2}\right)+g\left(v_{1}, v_{2}\right) \tag{5}
\end{equation*}
$$

$g: L^{a} \rightarrow[0, \infty]$ is an unknown function.

Solutions when $T_{1}=T_{2}$ is a strict t-norm and $T_{3}=T_{4}$ is a nilptent t-norm

$$
\begin{equation*}
k\left(u_{1}+v_{1}, u_{2}+v_{2}\right)=\min \left(k\left(u_{1}, u_{2}\right)+k\left(v_{1}, v_{2}\right), b\right) \tag{6}
\end{equation*}
$$

$k: L^{\infty} \rightarrow[0, b]$ is an unknown function.

Proposition 1 (Baczyński, Jayaram (2009)).

Fix real $a, b>0$. For a function $f:[0, a] \rightarrow[0, b]$ the following statements are equivalent:
(i) f satisfies the functional equation

$$
f(\min (x+y, a))=\min (f(x)+f(y), b), \quad x, y \in[0, a] .
$$

(ii) Either $f=0$, or $f=b$, or $f(x)=\left\{\begin{array}{ll}0, & \text { if } x=0, \\ b, & \text { if } x>0,\end{array}\right.$, or there exists a unique constant $c \in\left[\frac{b}{a}, \infty\right)$ such that $f(x)=\min (c x, b)$, for all $x \in[0, a]$.

Main results

$$
\mathcal{I}\left(x, \mathcal{T}_{1}(y, z)\right)=\mathcal{T}_{2}(\mathcal{I}(x, y), \mathcal{I}(x, z))
$$

Using this method we are able to solve our main equation when t-norms $\mathcal{T}_{1}=\left(T_{1}, T_{2}\right)$ and $\mathcal{T}_{2}=\left(T_{3}, T_{4}\right)$ on \mathcal{L}^{I} are t-representable and such that $T_{1}=T_{2}$ and $T_{3}=T_{4}$ are continuous and Archmidean t-norms.

Main results

$$
\mathcal{I}\left(x, \mathcal{T}_{1}(y, z)\right)=\mathcal{T}_{2}(\mathcal{I}(x, y), \mathcal{I}(x, z))
$$

Using this method we are able to solve our main equation when t-norms $\mathcal{T}_{1}=\left(T_{1}, T_{2}\right)$ and $\mathcal{T}_{2}=\left(T_{3}, T_{4}\right)$ on \mathcal{L}^{I} are t-representable and such that $T_{1}=T_{2}$ and $T_{3}=T_{4}$ are continuous and Archmidean t-norms.

FURTHER WORK IN THIS TOPIC

- Detailed description of all correct solutions
- Other distributive equations on \mathcal{L}^{I} for t-representable operations
- Other classes of t-norms
- Possible applications

Thank You for the attention!

