On some copula related software tools

Tomáš Bacigál

Slovak University of Technology in Bratislava
2012
Outline

- Overview of software for modelling with copulas
 - commercial
 - R packages
- Some copula constructions
 - Archimax
 - distorted univariate conditioning stable
- Implementation in our package
- Development environments
alternatives

• commercial

Mathematica 8

alternatives

• commercial

Mathematica 8

Matlab

part of in-built Statistics Toolbox
alternatives

- commercial
 Mathematica 8
 Matlab
 Excel
 - Hoadley Finance Add-in
 - Vose Model Risc
Model Risk 4
alternatives

- commercial
 Mathematica 8
 Matlab
 Excel
 S-plus
 - S+ Finmetrics / EVANESCE
alternatives

• commercial
 Mathematica 8
 Matlab
 Excel
 S-plus
• „free”
 XploRe
 • abandoned in 2007, modelling VaR and extreme value
XploRe version 4.2a (May 10 1999)

Contents of _tmp

[1,] "Welcome to XploRe!"

Contents of _tmp

[1,] 3

1+2
R-packages

- copula

authors: I.Kojadinovic, J.Yan

copulas: elliptical (normal and t), Archimedean (Clayton, Gumbel, Frank, and Ali-Mikhail-Haq), extreme value (Gumbel, Husler-Reiss, Galambos, Tawn, and t-EV), and other families (Plackett and Farlie-Gumbel-Morgenstern).

R-packages

• copula
• CDVine

authors: U.Schepsmeier, E.C.Brechmann

description: This package provides functions for statistical inference of canonical vine (C-vine) and D-vine copulas. It contains tools for bivariate exploratory data analysis and for bivariate as well as vine copula selection. Models can be estimated either sequentially or by joint maximum likelihood estimation. Sampling algorithms and plotting methods are also included.
R-packages

- copula
- CDVine
- copulaedas

authors: Y.González-Fernández, M.Soto

description: Estimation of Distribution Algorithms Based on Copula Theory. This package contains implementations of various classes of Estimation of Distribution Algorithms (EDAs) based on copula theory: Copula EDAs and Vine EDAs. In this package, EDAs are implemented using S4 classes with generic functions for its main parts: seeding, selection, learning, sampling, replacement, local optimization, termination, and reporting. The package also includes the implementation of a group of well-known optimization test problems and utility functions to study the behavior of EDAs.
R-packages

• copula
• CDVine
• copulaedas
• copBasic

author: W.H. Asquith

description: Survival, dual, co-copula; level curves, inverses and derivatives for generating rv's; diagonal sections; Plackett copula; composition of 2 copulas (or 1 leading to asymmetric cop.); measures of association (Kendall's Tau, Spearman's Rho, Gini's Gamma, Blomqvist's Beta, bSchweizer and Wolff's Sigma), tail dependence.
R-packages

- copula
- CDVine
- copulaedas
- copBasic
- fCopulæ (Rmetrics)

authors: Diethelm Wuertz and many others

descript.: Environment for teaching "Financial Engineering and Computational Finance". Archimedean, elliptical, EV c., interactive plots.
R-packages

- copula
- CDVine
- copulaedas
- copBasic
- fCopulae
- fgac

author: V.A.Gonzalez-Lopez

description: 7 families of copulas (Generalized Archimedean Copulas)
R-packages

- copula
- CDVine
- copulaedas
- copBasic
- fCopulae
- fgac
- HAC

authors: O.Okhrin and A.Ristig

description: Estimation of the structure and the parameters, simulation methods and structural plots of high-dimensional Hierarchical Archimedean Copulae
R-packages

- copula
- CDVine
- copulaedas
- copBasic
- fCopulæ
- fgac
- HAC

- nacopula

authors: M.Hofert, M.Maechler

description: Nested Archimedean copulas. Procedures for computing function values and cube volumes, characteristics such as Kendall's tau and tail dependence coefficients, efficient sampling algorithms, various estimators, and goodness-of-fit tests. Also contains related univariate distributions and special functions such as the Sibuya distribution, the polylogarithm, Stirling and Eulerian numbers.
R-packages

- copula
- CDVine
- copulaedas
- copBasic
- fCopulae
- fgac
- HAC

- nacopula
- pencopula

author: Ch.Schellhase

description: Flexible copula density Estimation with penalized hierarchical B-Splines
R-packages

- copula
- CDVine
- copulaedas
- copBasic
- fCopulae
- fgac
- HAC
- nacopula
- pencopula
- sbgcop

author: P.Hoff

description: Semiparametric Bayesian Gaussian copula estimation and imputation
Copula constructs

- **Archimax**

 \[C_{f,D}(x,y) = f^{-1}\left[(f(x) + f(y)) D\left(\frac{f(x)}{f(x) + f(y)} \right) \right] \]

 where
 - a convex continuous decreasing function \(f: [0, 1] \to [0, \infty), f(1) = 0 \) is called a **generator**, with pseudo-inverse \(f^{-1}(x) = f^{-1}(\min(f(0), x)) \),
 - a convex function \(D: [0, 1] \to [0, 1], \max(t, 1-t) \leq D(t) \leq 1 \) for all \(t \in [0, 1] \), is called a **dependence function**

Reference: (Capéraà et al. 2000)

Observe that Archimax copulas contains as special subclasses

- all Archimedean copulas (then \(D \equiv 1 \)) and
- all extreme value copulas (then \(f(t) = -\log(t) \)).
Copula constructs

- **Archimax**
 \[C_{f,D}(x, y) = f^{-1}\left(\left(f(x) + f(y) \right) \right) D\left(\frac{f(x)}{f(x) + f(y)} \right) \]
 where
 - a convex continuous decreasing function \(f : [0, 1] \rightarrow [0, \infty) \), \(f(1) = 0 \) is called a *generator*, with pseudo-inverse \(f^{-1}(x) = f^{-1}(\min(f(0), x)) \),
 - a convex function \(D : [0, 1] \rightarrow [0, 1] \), \(\max(t, 1 - t) \leq D(t) \leq 1 \) for all \(t \in [0, 1] \), is called a *dependence function*

- **Distorted univariate conditioning stable (DUCS)**
 \[C_{(f,d)}(x, y) = x f^{-1}\left(\frac{f(y)}{d(x)} \right) \]
 where
 - a non-decreasing function \(d : [0, 1] \rightarrow [0, 1] \) is called *distortion* which needs to coexist with a function \(\dd : [0, 1] \rightarrow [0, 1] \) such that \(\dd(x)d(x) = x \)

Note that DUCS copulas can be seen as particular case of distortion of general copulas \(C_{(\dd)}(x, y) = \dd(x) \cdot C(d(x), y) \)

Reference: (Mesiar – Pekárová, 2010)
Copula constructs

- **Archimax**
 \[
 C_{f,D}(x,y) = f^{-1}
 \left[
 \left(f(x) + f(y) \right) D
 \left(\frac{f(x)}{f(x) + f(y)} \right)
 \right]
 \]
 where
 - a convex continuous decreasing function \(f : [0, 1] \rightarrow [0, \infty) \), \(f(1) = 0 \) is called a *generator*, with pseudo-inverse \(f^{-1}(\min(f(0), x)) \),
 - a convex function \(D : [0, 1] \rightarrow [0, 1] \), \(\max(t, 1-t) \leq D(t) \leq 1 \) for all \(t \in [0, 1] \), is called a *dependence function*

- **Distorted univariate conditioning stable (DUCS)**

- **Construction methods for compounds**
 - generators \(f_i \) or its inverse (Bacigál – Juráňová – Mesiar, 2010)
 \[
 f = \sum_i a_i f_i
 \]
 \[
 f = \left(\sum_i a_i f_i^{-1} \right)^{-1}
 \]
 - dependence functions (Bacigál – Jágr – Mesiar, 2010)
 \[
 D_i(x) = \sum_i \left(a_i x + b_i (1-x) \right) D_i \left(\frac{a_i x}{a_i x + b_i (1-x)} \right)
 \]
 \[
 \sum_i a_i = \sum_i b_i = 1
 \]
 \[
 D(x) = \left(\sum_i a_i B_i^{-1} \right)^{-1}(x) + 1 - x \quad \text{with} \quad B_i(x) = D_i(x) - 1 + x
 \]
Copula constructs

- **Archimax**

 \[C_{f,D}(x, y) = f^{(-1)} \left[(f(x) + f(y)) D \left(\frac{f(x)}{f(x) + f(y)} \right) \right] \]

 where

 - a convex continuous decreasing function \(f: [0, 1] \rightarrow [0, \infty), f(1) = 0 \) is called a *generator*, with pseudo-inverse \(f^{-1}(x) = f^{-1}(\min(f(0), x)) \),
 - a convex function \(D: [0, 1] \rightarrow [0, 1], \max(t, 1-t) \leq D(t) \leq 1 \) for all \(t \in [0, 1] \), is called a *dependence function*

- **Distorted univariate conditioning stable (DUCS)**

- **Construction methods for compounds**

- **d-dimensional Archimax** (Jágr – Mesiar, 2012)

 \[C_{f,L}(x_1, \ldots, x_d) = f^{(-1)} \left[L \left(f(x_1) + \ldots + f(x_d) \right) \right] \]

 where

 - \(L \) denotes tail dependence function \(L(x_1, \ldots, x_d) = (x_1, \ldots, x_d) D \left(\sum_i x_i, \ldots, \sum_i x_i \right) \)
 - \(D \) is again (Pickand's) dependence function

Construction of d-dimensional dependence function (Jágr – Mesiar, 2012)

\[L(x_1, \ldots, x_d) = \sum_j^n L_j(\alpha_{j1} x_1, \ldots, \alpha_{jd} x_d) \quad \text{with} \quad \sum_j^n \alpha_{ji} = 1, \quad \alpha_{ji} \geq 0 \]
Implementation in our R package

```r
> source(utils.R)
> source(archimax_functions.R)
> pCAX(0.5, 0.5, archimedean=amedProduct, dependence=depfu1)
[1] 0.25
> dCAX(0.5, 0.5, arch=amedGumbel, dep=depfuGalambos, apar=1, dpar=0)
[1] 1
```

Distribution related functions:
- `pCAX(u,v)` - copula CDF
- `pCAXd(u,v,var="u")` - part. deriv.
- `dCAX(u,v)` - density
- `rCAX(n)` - simulation
- `eCAX(data)` - estimation
- `gofCAX(data)` - GOF test

Archimedean generators:
- `amedProduct` $f(t) = -\log(t)$
- `AmedGumbel` $f(t) = [-\log(t)]^p$
- `AmedClayton` $f(t) = t^p - 1$
- `AmedFrank` $f(t) = t^p - 1$
- `AmedJoe` $f(t) = t^p - 1$
- `amedBB1` $f(t) = t^p - 1$

Dependence func.:
- `depfu1` $D(t) = 1$
- `depfuGumbel` $D(t)$
- `depfuMixed` $D(t)$
- `depfuGalambos` $D(t)$
- `depfuHuslerReiss` $D(t)$
- `depfuTawn` $D(t)$

Implementation in our R package

amedGumbel <- list(
 parameters = c(2),
 gen = function(t, pars) (-log(t))^pars[1],
 gen.der = function(t, pars) -pars[1]*(-log(t))^(pars[1]-1)/t,
 gen.der2 = function(t, pars) pars[1]*(-log(t))^(pars[1]-2)*(pars[1]-1-log(t))/t^2,
 gen.inv = function(t, pars) exp(-t^(1/pars[1])),
 gen.inv.der = function(t, pars) -exp(-t^(1/pars[1]))*t^(1/pars[1]-1)/pars[1],
 gen.inv.der2 = function(t, pars) exp(-t^(1/pars[1]))*t^(1/pars[1]-2)*(pars[1]+t^(1/pars[1])-1)/pars[1]^2,
 lower = 1, #Pi, g(t)=-ln(t)
 upper = Inf #M
)

> amedGumbel$gen(0,1)
[1] Inf
Implementation in our R package

```R
> amedCC <- famedCC( archimedean1=amedGumbel, archimedean2=amedClayton, pars1=5, pars2=3, inverse=FALSE)

> plot(rCAX(1000, arch=amedCC, apars=0.8))

> eCAX <- (data, arch=amedCC, alimits=list(0,1), technique="ML", procedure="optim", method="default")
```

eCAX parameters with values:

- data: (data frame or Nx2 matrix)
- archimedean
- dependence
- procedure: "optim", "nlminb", "nls", "grid"
- technique: "ML", "LS"
- method: (depends on procedure)
- grid: number of points dividing parameters interval
- alimits: list of upper and lower bounds for parameters of archimedean parameters
- dlimits: the same but for dependence function
- aparameters: archimedean parameters set to be estimated over
- dparameters: the same for dependence functions
Integrated Development Environments

- for Windows
 Tinn-R, Notepad++ (NpptoR), RevolutionR
- for Linux
 Gedit or Kate (with plugins), RKWard
- multiplatform
 Rstudio
 Emacs or Eclipse (with plugins)
- package:
 Rcommander
Tinn-R
RKWard
```r
library(ggplot2)
view(diamonds)
summary(diamonds)
summary(diamonds$price)
aveSize <- round(mean(diamonds$carat), 4)
clarity <- levels(diamonds$clarity)

p <- qplot(carat, price,
data=diamonds, color=clarity,
  xlab="Carat", ylab="Price",
  main="Diamond Pricing")

> summary(diamonds$price)
Min.  1st Qu.   Median    Mean  3rd Qu.   Max.
326   950   2401  3933   5324 18820
> aveSize <- round(mean(diamonds$carat), 4)
> clarity <- levels(diamonds$clarity)
> p <- qplot(carat, price,
+     data=diamonds, color=clarity,
+     xlab="Carat", ylab="Price",
+     main="Diamond Pricing")
>
> format.plot(plot=p, size=23)
```