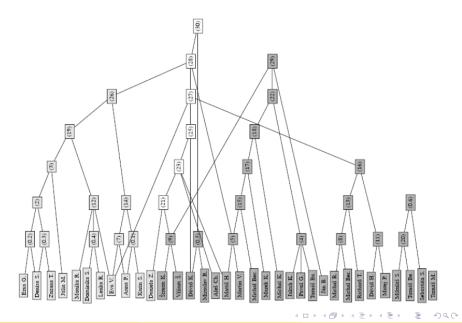
## Quality measure of fuzzy formal concepts

## Krajči Stanislav, Antoni Ľubomír Institute of Computer Science, UPJŠ Košice

FSTA 2012 Liptovský Ján February 2, 2012


(Krajči S., Antoni Ľ.)

Quality measure of fuzzy formal concepts

## Introduction

- fuzzy formal concept analysis special data-mining method
- method of multi-valued data analysis
- try to discover concepts (i. e. clusters, groups) of similar objects
- [Krajči Krajčiová, 2008] Social networks and fuzzy formal concept analysis
- special social network: school class
- each student expressed relationships to all schoolmates by values from a given range
- used method: Krajči's one-sided fuzzy concept lattice including modified Rice & Siff's algorithm
- obtained results: clusters, i.e. groups of pupils sensed by schoolmates in a similar way

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



(Krajči S., Antoni L.)

#### Quality measure of fuzzy formal concepts

## New experiment

- new data of the same class obtained in 2011
- new approach to gain results
- 29 students (8 girls and 21 boys)
- each student expressed his/her relationship to each schoolmates by 7 values

| value | explanation                   |  |  |  |  |  |
|-------|-------------------------------|--|--|--|--|--|
| 3     | he/she is my very good friend |  |  |  |  |  |
| 2     | he/she is my friend           |  |  |  |  |  |
| 1     | I tend him/her positively     |  |  |  |  |  |
| 0     | I tend him/her neutrally      |  |  |  |  |  |
| -1    | I tend him/her negatively     |  |  |  |  |  |
| -2    | l do not like him/her         |  |  |  |  |  |
| -3    | -3 I dislike him/her          |  |  |  |  |  |

・ロト ・ 同ト ・ ヨト ・ ヨト

- the result table
- rows as evaluated schoolmates
- columns as evaluating schoolmates

|    | gender | name        | 1 | 2  | 3  |    | 17 | 18 | 19 | 20 | 21 |    | 27 | 28 | 29 |
|----|--------|-------------|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 1  | М      | Ján B.      | 3 | 0  | -1 |    | -1 | 2  | -  | -1 | 1  |    | 1  | -1 | 1  |
| 2  | М      | Tomáš Ba.   | 2 | 3  | 3  |    | 1  | 2  | _  | 3  | 1  |    | 3  | 2  | 0  |
| 3  | М      | Michal Bec. | 2 | 3  | 3  |    | 0  | 2  | -  | 2  | 1  |    | 3  | 0  | 1  |
|    |        |             | . |    |    |    |    |    |    |    |    |    |    |    |    |
| :  | :      | :           | : | :  | :  | ·. |    | :  |    |    |    | ·. | :  | :  | :  |
| 17 | F      | Anna P.     | 2 | 2  | 1  |    | 3  | 2  | _  | 1  | 3  |    | 1  | 3  | 1  |
| 18 | M      | Matej P.    | 2 | 2  | 2  |    | 0  | 3  | _  | 3  | 2  |    | 3  | 1  | 2  |
| 19 | М      | Miroslav R. | 0 | -2 | -3 |    | 0  | -1 | -  | -1 | 0  |    | -1 | -1 | -1 |
| 20 | M      | Michal R.   | 2 | 2  | 2  |    | 0  | 3  | _  | 3  | 1  |    | 3  | 0  | 2  |
| 21 | F      | Lenka R.    | 2 | 1  | 2  |    | 2  | 2  | -  | 0  | 3  |    | 2  | 2  | 1  |
|    |        |             | . |    |    |    |    |    |    |    |    |    |    |    |    |
| :  | :      |             | : | :  | :  |    |    | :  | :  |    | :  |    | :  |    | :  |
| 27 | м      | Richard T.  | 3 | 3  | 3  |    | 1  | 3  | -  | 3  | 2  |    | 3  | 2  | 3  |
| 28 | F      | Eva V.      | 2 | 3  | 1  |    | 3  | 2  | -  | 1  | 3  |    | 3  | 3  | 1  |
| 29 | М      | Martin V.   | 2 | 0  | 1  |    | 0  | 2  | -  | 1  | 1  |    | 1  | 0  | 3  |

- one of them rejected to participate at the evaluation (19th column)
- he was evaluated only by schoolmates (19th row)
- maximal values on the table diagonale

<ロ> <四> <四> <四> <四> <四> <四</p>

- using the funkction  $x \mapsto \frac{x+3}{6}$  can be table values transformed to  $\left\{0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1\right\} \subseteq [0, 1]$
- the main purpose: obtain not only groups of students sensed similar, but give a quality of these groups
- new approach in the experiment: fuzzy context, fuzzy α-cut, fuzzy α-concept, quality of concept

#### Fuzzy context

- B objects,  $B \neq \emptyset$
- $A \text{attributes}, A \neq \emptyset$
- R a fuzzy relation on  $B \times A$ , i. e.  $R : B \times A \rightarrow [0, 1]$
- R a table
  - B its rows (evaluated schoolmates)
  - A its colums (evaluating schoolmates)
- R(b, a) the **degree** to which the object *b* carries the attribute *a*

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

#### Fuzzy $\alpha$ -cuts

 $R: B \times A \rightarrow [0, 1]$ 

 $R_{\alpha} \subseteq B \times A, \quad \alpha \in [0, 1]$ 

#### Two different approaches:

- upper  $\alpha$ -cuts:  $R_{\alpha} = \{ \langle b, a \rangle \in B \times A : R(b, a) \ge \alpha \}, \quad \alpha \in [0, 1]$
- lower  $\alpha$ -cuts:  $R_{\alpha} = \{ \langle b, a \rangle \in B \times A : R(b, a) \leq \alpha \}, \quad \alpha \in [0, 1]$

example of fuzzy context

|                       | a <sub>1</sub> | <i>a</i> <sub>2</sub> | <i>a</i> 3 | $a_4$ |
|-----------------------|----------------|-----------------------|------------|-------|
| <i>b</i> <sub>1</sub> | 0.4            | 0.2                   | 0.6        | 0.3   |
| b <sub>2</sub>        | 0.6            | 0.8                   | 0.9        | 0.4   |
| <i>b</i> <sub>3</sub> | 0.1            | 0.6                   | 0.7        | 0.3   |
| <i>b</i> <sub>4</sub> | 0.2            | 0.3                   | 0.4        | 0.2   |

#### upper 0.4-cut

|                                  | a <sub>1</sub> | a <sub>2</sub> | a <sub>3</sub> | $a_4$ |
|----------------------------------|----------------|----------------|----------------|-------|
| <i>b</i> <sub>1</sub>            | ×              |                | ×              |       |
| b <sub>2</sub><br>b <sub>3</sub> | ×              | ×              | ×              | ×     |
| $b_3$                            |                | Х              | Х              |       |
| <i>b</i> <sub>4</sub>            |                |                | ×              |       |

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

## Fuzzy $\alpha$ -concept

 $X \subseteq B, Y \subseteq A, \alpha \in [0, 1]$ 

• 
$$X^{\nearrow \alpha} = \{ a \in A : (\forall b \in X) R(b, a) \ge \alpha \}$$

• 
$$Y^{\checkmark \alpha} = \{ b \in B : (\forall a \in Y) R(b, a) \ge \alpha \}$$

If  $X = X^{\nearrow \alpha \swarrow \alpha}$  then the pair  $\langle X, X^{\nearrow \alpha} \rangle$  is called an **fuzzy**  $\alpha$ -concept. Set of all fuzzy  $\alpha$ -concepts is called  $\alpha$ -lattice  $(L_{\alpha})$ .

example of fuzzy 0.4-concept  $\langle \{b_2, b_3\}, \{a_2, a_3\} \rangle$ 

|                       | a <sub>1</sub> | <i>a</i> <sub>2</sub> | <i>a</i> 3 | <i>a</i> <sub>4</sub> |
|-----------------------|----------------|-----------------------|------------|-----------------------|
| <i>b</i> <sub>1</sub> | ×              |                       | ×          |                       |
| <i>b</i> <sub>2</sub> | ×              | ×                     | ×          | ×                     |
| <i>b</i> <sub>3</sub> |                | ×                     | ×          |                       |
| <i>b</i> <sub>4</sub> |                |                       | ×          |                       |

- generating all  $\alpha$ -concepts (e. g.: groups of students):
  - a) by definition to try all subsets of B (complexity:  $2^{|B|}$ )
  - b) by algorithms (better complexity)

(Krajči S., Antoni L.)

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

- subset of objects in  $\alpha$ -concepts for different  $\alpha \in [0, 1]$  can be equal
- even for p positive integer, where p < n: if table of fuzzy relation R contains n + 1 different values, then  $L_{\alpha}$  for all  $\alpha \in \left(\frac{p}{n}, \frac{p+1}{n}\right]$  are identical
- so it is sufficient to consider  $\alpha$ -cuts only for  $\alpha \in \left\{\frac{0}{n}, \frac{1}{n}, \dots, \frac{n}{n}\right\}$
- and count how many times every subset of objects appears in all L<sub>α</sub>

## Quality of fuzzy $\alpha$ -concept

$$q(X) = \frac{\left|\left\{p \in \{0, 1, \dots, n\} : \left(\exists Y \subseteq A\right) \langle X, Y \rangle \in L_{\frac{p}{n}}\right\}\right|}{n+1}$$

- the values q(X) are rational numbers
- q(X) = 0
   X is not α-concept for any α
- *q*(*X*) > 0
   X is α-concept for some α
- a higher number corresponds to a more significant concept

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

| subset                | $\frac{0}{n}$ -concept | $\frac{1}{n}$ -concept         | <br> | n/2-concept                    | quality of subset |
|-----------------------|------------------------|--------------------------------|------|--------------------------------|-------------------|
| <i>X</i> <sub>1</sub> |                        | $\checkmark$                   |      |                                | $q(X_1)$          |
| <i>X</i> <sub>2</sub> |                        |                                |      |                                | $q(X_2)$          |
| ÷                     |                        |                                |      |                                | •                 |
| ÷                     |                        |                                |      |                                | :                 |
| X <sub>2 B </sub>     |                        |                                |      |                                | $q(X_{2^{ B }})$  |
|                       |                        | $\left L_{\frac{1}{n}}\right $ | <br> | $\left L_{\frac{n}{n}}\right $ |                   |

• subset ordering by quality:

 $q(X_{j_1}) \leq q(X_{j_2}) \leq q(X_{j_3}) \leq \ldots$ 

less significant concepts

 $\leq q\left(X_{j_{2|B|-1}}\right) \leq q\left(X_{j_{2|B|}}\right)$ 

イロト 不得 トイヨト イヨト 三日

significant concepts

|   | name        | Ján B. | Tomáš Ba.     | Michal Bec.   | Michal Ber. |
|---|-------------|--------|---------------|---------------|-------------|
| 1 | Ján B.      | 1      | $\frac{1}{2}$ | <u>1</u><br>3 | 1           |
| 2 | Tomáš Ba.   | 56     | 1             | 1             | 23          |
| 3 | Michal Bec. | 56     | 1             | 1             | 23          |
| 4 | Michal Ber. | 1      | $\frac{1}{3}$ | 56            | 1           |

|                  |                       |                        |                        | $\alpha$ -concept      |                        |                        |              |         |
|------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------------|---------|
| subset           | $\alpha = 0$          | $\alpha = \frac{1}{6}$ | $\alpha = \frac{1}{3}$ | $\alpha = \frac{1}{2}$ | $\alpha = \frac{2}{3}$ | $\alpha = \frac{5}{6}$ | $\alpha = 1$ | quality |
| Ø                |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {1}              |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {2}              |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {3}              |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {4}              |                       |                        |                        |                        |                        | $\checkmark$           |              | 0.14    |
| {1,2}            |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {1,3}            |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {1,4}            |                       |                        |                        |                        |                        | $\checkmark$           | $\checkmark$ | 0.29    |
| {2,3}            |                       |                        |                        | $\checkmark$           | $\checkmark$           | $\checkmark$           | $\checkmark$ | 0.57    |
| {2,4}            |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {3, 4}           |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {1,2,3}          |                       |                        |                        | $\checkmark$           |                        |                        |              | 0.14    |
| {1,2,4}          |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {1,3,4}          |                       |                        |                        |                        |                        |                        |              | 0.00    |
| {2,3,4}          |                       |                        |                        | $\checkmark$           | $\checkmark$           | $\checkmark$           |              | 0.43    |
| $\{1, 2, 3, 4\}$ | <ul> <li>✓</li> </ul> | $\checkmark$           | $\checkmark$           | $\checkmark$           | $\checkmark$           | $\checkmark$           | $\checkmark$ | 1.00    |

(Krajči S., Antoni L.)

(ロ)、(四)、(E)、(E)、(E)

• for 29 students is not effective to try all subsets (2<sup>29</sup> possibilities)

#### modified Ganter's algorithm

- original algorithm: computation the next concept from previous one
- our modification: provide  $\alpha$ -cuts and quality measure of fuzzy concepts

$$\begin{array}{l} \text{input } B, A, R, n \\ \text{for } \left( \alpha = \frac{0}{n}, \frac{1}{n}, \dots, \frac{n}{n} \right) \text{do} \\ X \leftarrow \emptyset^{\nearrow \alpha \swarrow' \alpha} \\ L_{\alpha} \leftarrow X \\ q(X) \leftarrow q(X) + \frac{1}{n+1} \\ \text{while } X \neq B \text{ do} \\ \text{for } (i = |B|, |B - 1|, \dots, 0) \text{ do} \\ W \leftarrow ((X \cap \{1, 2, \dots, i - 1\}) \cup \{i\})^{\nearrow \alpha \swarrow' \alpha} \\ \text{if } ((X \cap \{1, 2, \dots, i - 1\} = W \cap \{1, 2, \dots, i - 1\}) \text{ and } (i \in X \setminus W)) \\ L_{\alpha} \leftarrow X \\ X \leftarrow W \\ q(X) \leftarrow q(X) + \frac{1}{n+1} \\ \text{output } L_{\alpha}, q \end{array}$$

-

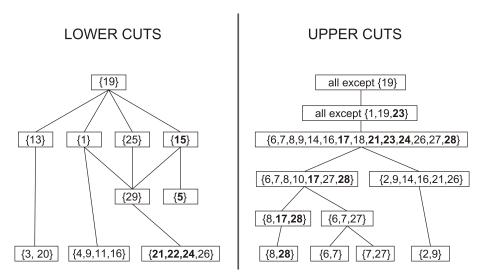
・ロト ・ 理 ト ・ ヨ ト ・

# Result of the experiment

• we obtained totally:

about 10 000 concepts in upper cuts (UC) and 50 000 concepts in lower cuts (LC)

# number of significant concepts, i. e. q(X) > 0.25: UC: about 50 concepts, LC: about 70 concepts


| quality | upper cuts concepts             | quality | lower cuts concepts |
|---------|---------------------------------|---------|---------------------|
| 0.71    | all students except {19}        | 0.71    | {19}                |
| 0.43    | all students except {1, 19}     | 0.57    | {19, 25}            |
| 0.43    | all students except {19, 23}    | 0.57    | {13, 19}            |
| 0.43    | all students except {1, 19, 23} | 0.57    | {1,19}              |
|         |                                 |         |                     |
|         | -                               | :       | •                   |

### • the most significant concepts:

UC: groups of students sensed by schoolmates positive LC: groups of students sensed by schoolmates negative

- e. g. : student (19) who rejected to participate at the evaluation: UC: does not occur in the most significant groups LC: occurs in the most significant groups
- gender division of the groups visible in UC and LC

• the most significant relationships:



-

・ロト ・ 同ト ・ ヨト ・ ヨト

# Conclusions

#### I. conclusion:

- this approach give some useful information about structure of selected social network
- can help to class teacher or personal managers to compose teams
- first usage of quality measure of fuzzy concepts directly linked with social networks

#### II. conclusion:

• it is appropriate to try cuts with lower and upper boundaries

#### Fuzzy $\alpha, \beta$ -cuts:

$$\mathbf{R}_{\alpha,\beta} = \{ \langle \mathbf{b}, \mathbf{a} \rangle \in \mathbf{B} \times \mathbf{A} : \alpha \leq \mathbf{R}(\mathbf{b}, \mathbf{a}) \leq \beta \}, \quad \alpha, \beta \in [0, 1]$$

• this approach require to execute *n*<sup>2</sup> cuts and may be more precise

#### III. conclusion:

next aim: compare results with modified Rice & Siff method for experiment in 2011

## Thank you for your attention

stanislav.krajci@upjs.sk lubomir.antoni@student.upjs.sk

ъ

ヘロト 人間 とくほとくほとう