Modeling point's position time series with respect to common trend

Tomáš Bacigál

Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, Slovak University of Technology
Bratislava

- *x* <u>Objective</u>: To compare 3 ways of processing data
- x Primary field of application: Geodesy
- x <u>Idea</u> proposed within:

Komorníkova and Komorník, Time series models for earth's crust kinematics, 2002

We've got a point having its coordinates in horizontal coordinate system (n, e, v).

Components:

The position has been observed by means of Global Positioning System (GPS) and given daily for 2 years. So we have 730 time points per every coordinate.

3 ways to deal with such a geodetic data:

- Process it separately as 2 univariate time series
- Accept the interrelationship and use the multivariate modeling methods
- Think about physical and geometrical background and transform the data with respect to common trend

$$\begin{pmatrix} y \\ x \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} n \\ e \end{pmatrix}$$

$$\alpha = ?$$

Rotation α of coordinate system (n, e) into common trend direction

1.) deterministic trend: $n=a_1+b_1t$

$$n = a_1 + b_1 t$$

$$e = a_2 + b_2 t$$

t - time

 $e=a_2+b_2t$ a, b - regr. parameters

substitution: n(t), $e(t) \rightarrow x(n,e)$

$$x = -(a_1 + b_1 t) \cos \alpha + (a_2 + b_2 t) \sin \alpha$$

$$x = (a_2 \cos \alpha - a_1 \sin \alpha) + (b_2 \cos \alpha - b_1 \sin \alpha) t$$

0

2.) stochastic trend:

$$e_t = a_0 + b_0 n_t$$

or

$$\alpha = \arctan(b_0)$$

Next step is to decompose y, x into:

- linear trend
- seasonal component
- residuals

and to model the residuals with AR(p)

 $var(res_v)$

The order p of autoregressive model AR(p) is chosen by employing:

• plot of residuals' variances

 $var(res_x)$

• information criteria

So the whole model for *y*, *x* has the form

$$y_{\rm m}$$
, $x_{\rm m} = {\rm trend} + {\rm seasonal \ component} + {\rm ARmodel \ }(p)$

Because transformation matrix $M_{n,e\to y,x}$ is orthogonal, reverse transformation is provided simply by transposed M:

Prediction

and some of its efficiency masures:

- mean square error
- mean percentage error

$$mse = \frac{1}{k} \sum_{t=1}^{k} (real_t - model_t)^2$$

$$mpe = \frac{1}{k} \sum_{t=1}^{k} \frac{real_t - model_t}{real_t} 100 \%$$

Results

trend n 13.2 mm / year
 e 21.5 mm / year

common trend y = 25.2 mm / year

period = 365 days

seasonality n amplitude = 2.2 mm e 1.6 mm y 2.5 mm

x 1.1 mm

method	variable	order	mse	mpe
		p	$[\mathrm{mm^2}]$	[%]
1.) independent univariate time series	n	1	7.40	5.08
	e	4	3.70	2.88
2.) multivariate time series	n	2	8.13	5.44
	e	2	5.06	5.13
3.) respecting common trend	n	2 (y)	5.90	4.04
	e	4 (x)	4.10	2.49

removing outliers

Results

method	variable	order	mse	mpe
		P	$[mm^2]$	[%]
1.) independent univariate time series	n	1	7.37	4.94
	e	4	3.34	1.85
2.) multivariate time series	n	4	7.52	5.01
	e	4	4.23	4.20
3.) respecting common trend	n	4 (y)	5.59	1.97
	e	4 (x)	3.33	0.50

Thank you!