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GPS observation time series

Location: Permanent station Borowiec (Poland)  
Part of: EUREF Permanent Network 
Purpose: Regular monitoring of recent kinematics of the Earth’s crust (among others)
Period: 2001-2002
Time points: 730 daily average values
Coordinate system: Horizontal (n e v)

2D – horizontal plane:
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Note:

The obvious linear trend is the consequence of a long-term drift of the Eurasian tectonic plate.



Processing

3 ways to treat our data:

Ø Process it separately as two independent univariate time series.

Ø Accept the interrelationship and use the multivariate modeling methods.

Ø Test for cointegration and transform the data with respect to common trend.

The goal of our experiment:

Compare the three approaches according to forecast accuracy and 
show the benefit of the cointegration theory.



Cointegration

Two non-stationary I(1) time series are cointegrated, if one of their linear 
combinations is I(0) and hence stationary. I(k) denotes “integrated of k-th order”.

Procedure:

ü Testing for the presence of stochastic trend (against pure deterministic components)

§ tests for unit roots (Dickey-Fuller)

§ stationarity tests (Kwiatkowski)

ü Testing for cointegration

§ Engle-Granger two steps method

§ Johansen’s method

ü Common stochastic trend estimate (Gonzalo-Granger)
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Equilibrium (or long-run) relation between n, e. Common stochastic trend.

Note:

β denotes cointegration parameters vector and w2 eigenvector pertaining to common trend 
direction.



Geometric viewpoint
Looking for linear combination

enx
eny

22

11

δγ
δγ

+=
+=

n

e

y

x

α

such that  y represents a common trend direction and x a stationary trend-free variable, 
orthogonal to  y, the problem is easily rewritable into familiar transformation
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The angle α can be determined from 
analysis of deterministic (or stochastic) 
trend.
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Common trend direction variable
containing linear trend and seasonality.

Trend-free variable contains 
only seasonal component.

Final steps:

- Apply Box-Jenkins methodology.
- Transform the whole model back to north-east system.
- Forecast 5 out-of-sample values.
- Compute mean square (MSE) and mean percentage (MPE) error from model prediction 
and known real values.
- Compare errors from all of the methods.
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Results

Deterministic model parameters

Forecast measures of model effectivity



Thank you
:)


