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1. Introduction

Many technical disciplines involved in civil engineering, such as geology, geodesy,
statics of structures and others deal with position of particular points in time-space
to figure out processes that influence our environment (both original and man-made).
Supported by advancements and automation on the field of measuring instruments,
monitoring becomes robust and effective, yet demanding more appropriate methods
of processing. In this paper we’ll focus on modelling time-series arisen from ob-
servations by NAVSTAR Global positioning system (GPS), which is satellite based
navigational system developed and provided by the American Department of De-
fence. Observations had been performed daily in years 2001-2002 on GPS per-
manent station Borowiec (BORI1, Poland) which takes part in EUREF Permanent
Network representing a regional densification of global IGS net in Europe which
is used, among other purposes, for regular monitoring of recent kinematics of the
Earth’s crust (see [2]). The standard outcome, being in the form of three coordi-
nates (X, Y, 7) in geocentric coord.system, was transformed into local topocentric
horizontal coordinate system (n,e,v - north, east, vertical component) - with the
origin in the mean position of the two year period - to be further processed.
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Figure 1: Scheme of GPS installation and topocentric horizontal coordinate system

Because of significantly lower precision and negligible linear trend in vertical
direction, we only deal here with the two time series n and e each containing 730
data points. Figure 2 shows two dimensional representation of point variation on
Earth’s surface and Figure 3 time plot for each coordinate.

There’s easily seen the data following linear trend with a high level of fit. It’s a
consequence of the long-term drift of the Eurasian tectonic plate, anyway, this overt
drift is pretty suitable for applying several approaches of data processing mostly used
in mathematical statistics and for showing a plus of the proposed key procedure.

2. Data processing

Basically, we may treat our data as (a) two independent time series or (b) use the
fact that both series just reflect the same systematic and random disturbing effects,
in other words, they are significantly interconnected.



Figure 2: Daily record of point’s position in a ground plane.
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Figure 3: Time plot of point’s position variation.

The first approach has been and still is the most preferred way of time series
modelling in general, providing solid results in fitting. However, there is a slightly
higher danger here of modelling spurious processes and, consequently, coming to
misleading interpretations. The standard procedure includes modelling polynomial
(linear) and periodic (seasonal) trends, and then applying Box-Jenkins methodology
to cover some residual autocorrelations. This is well described in [4] and we’ll re-
enter it later in more details.

As for the (b)-group, it’s an reasonable tendency of evolution in data processing
to look for further relations and to develop more effective techniques (gratefully
using computers), such as turning from single equations to vector representation of
mathematical relations, etc. Vector regression analysis gives additional information
about modelled processes and the way they are linked together (in the form of
cross-correlation matrices, basically). We chose this modern approach as the second
alternative to be compared in conclusion.

Still staying in the last group, we should introduce a theory largely elaborated
by econometricians and given a name ”cointegration”. For brief explanation, two
non-stationary I(1) time series (means integrated of the order 1 ,having the first
differences stationary) are cointegrated, if one of their linear combinations is I(0) and
hence stationary. There are several tests for cointegration, for details and references
see [1]. The most used ones was employed for proving our series to be cointegrated.

Once having found cointegration, it’s naturally leading us to investigate a common
trend ([3]). We look for linear combination
y =mn+die
T = Yn + e (1)



such that y represents a common trend direction and x is a stationary trend-free
variable, orthogonal to y. In the light of our geometrical application, it’s easy
to rewrite a general common trend problem into familiar transformation (in 2D
cartesian system)

y =ncosa—+ esina

£ = —nsina + ecos (2)

as shown in Figure 4. The angle o can be determined either from analysis of stochas-

Figure 4: Transformation into common trend direction

tic trend
ey = ag + bon tan o = b (3)

or analysis of deterministic trend starting at linear regression
ne=a;+bit+ers, et =az+ byl + ey, (4)

where ¢ denotes time and «a,b regression parameters. If we place (4) into (2) and
focus on series &, which is supposed to be trend-free, then

r; = —(a1+bit+ery)sina+ (az + bt + e24) cosar
z; = (azcosa —apsina) + (bycosa — bysina) ¢t + (egcosa — egsina) (H)
0
(linear trend term in  is eliminated), so
tan a = Z—j . (6)

All right, we have got a new couple of time series y,z. The next step is to
model it the same way as two univariate series ((a) approach), at first by subtracting
linear trend and seasonal component, then by testing it for residual auto-correlations
and applying Box-Jenkins methodology. For comparing purposes we decided to
include only annual seasonality and exclude any cyclical component. Figure 5 shows
both series fitted by corresponding deterministic model. Correlogram of residuals
confirmed the presence of significant correlations. This small residual dependencies
may further be modelled by ARMA,ARCH, GARCH or some kind of TAR models,
however here we simply employ the more standard AR(p) (autoregressive model of

order p) defined

Y =Po+Cryims + Poyeo+ .. A+ Ppyip +Ev (7)
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Figure 5: New series y and « fitted by linear and/or cyclical trend.

where ®; /i = 1,...p / are parameters, ¢; white noise. The order p is chosen either
from plot of residuals’ variances (Fig. 6a, watch the relative steepness) or infor-
mation criteria (Fig. 6b, find a minimum), where AIC is Akaike and BIC Schwarz
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Figure 6: Order p determination: a) residuals’ variation, b) information criteria.

inf.criterion. Taking both results into account, there’s no doubt y, x should be mod-
elled by AR(2) and AR(4), respectively.

Model of y,x is ready, schematically y,,x, = trend + seasonality + AR(p),
however, this is not a final point we are supposed to come to. The new, model series
must be transformed back to (n,e) system. If (2) is written in matrix notation,
transformation matrix M, ._s, , is clearly orthogonal and therefore a backward
transformation can easily be performed

N, cosa —sino Ym
€m sin  Ccos o T

(because My psne = ML, =M __, ). For visual review Figure 7 joins original
data with the model.

One of the two cardinal purposes of data processing (that’s: to understand and
be able to forecast) is the next values prediction (Fig. 8). It can be utilized well for
comparing the methods. We did it. Having computed model values for next 5 days
and got the corresponding GPS measurements, we decided to quantify prediction
efficiency by these measures:

1 k
mean square error mse = — Y (real; —model;)* (8)
=1
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Figure 7: Original time series (black) and model (grey).
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Figure 8: Prediction

1 real, — model
EZ ! £100% , (9)

mean percentage error mpe =

P realy

where k is a number of predicted time points.
3. Results

First to mention are the parameters of deterministic model, i.e trend and season-
ality, shown in Table 1.

= trend 7 13.2 mm/ year

e 21.5mm/year } common trend y 25.2 mm / year

= seasonality  »n amplitude = 2.2 mm period = 365days
e 1.6 mm
5% 2.5mm
X 1.1 mm

Table 1: Deterministic model parameters

These results are approximately the same for all three methods (excepting those
relating to y, x, of course), and serve for data description. There’s pretty seen the
quantity of FEurasian tectonic plate long-term drift (25.2mm per year) and the effect
of seasonal forces in particular direction, too.

What is certainly more interesting is in Table 2, which contains results from
each method in separate line, namely mean square and mean percentage error of
predicted values per variable. This is accompanied by the order of autoregressive
model, properly chosen according to information criteria. Mse and mpe speak
positively for the method that respects the presence of common trend.

However, if outliers are removed using criterion of triple standard deviation (1%
confidence level), better accuracy is attained (Figure 3).



Table 2: Mean square and mean percentage error of predicted values.

order mse mpe

method variable
P [ mm’ [%]

1) n 1 7.40 5.08
independent univariate time series e 4 3.70 2.88
2) n 2 8.13 544
multivariate time series e 2 5.06 5.13
33 n 2¢5) | 590 4.04
respecting common trend ¢ 4 (x) 4.10 2.49

order mse mpe

method variable
p [ mm?] [%]

1) n 1 737 4.94
independent univariate time series e 4 334 185
2) n 4 7.52 5.01
multivariate time series e 4 4.23 4.20
3) n 4(y) | 559 0.50
respecting common trend e 4 (x) 3.33 1.97

Table 3: mse and mpe of predicted values after removing outliers.
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