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1 Introduction

Many technical disciplines involved in civil engineering, such as geology, geodesy, hy-
drology, statics of structures and others deal with geometric and physical quantities
to figure out processes that influence our environment (both original and man-made).
Supported by advancements and automation on the field of measuring instruments,
monitoring becomes robust and effective, yet demanding more appropriate methods
of processing. The most obvious geometric concern in geodesy is to determine a
position of particular points in time-space. For the purpose, variety of techniques
has been developed to precisely measure all the related mediating parameters, yet
there is a special one popularity of which has rocketed up in recent times.

In our work we focus on modelling time-series arisen from observations by NAVS-
TAR Global positioning system (GPS), which is satellite based navigational system
developed and provided by the American Department of Defence and now widely
used in civil sector. Observations had been performed daily in years 2001-2002 on
GPS permanent stations, which takes part in EUREF Permanent Network repre-
senting a regional densification of global IGS (International GPS Service) net in
Europe which is used, among other purposes, for regular monitoring of recent kine-
matics of the Earth’s crust (see [10]). The standard outcome, being in the form
of three coordinates (X,Y,Z) in geocentric coord.system, was transformed into local
topocentric horizontal coordinate system (n,e,v - north, east, vertical component)
- with the origin set into the mean position of the two year period - to be further
processed.

To understand the term ”time series” and to follow the up-coming theory smoothly,
it may be necessary to recall some fundamental facts.

A discrete time series is a set of time-ordered data {xt1, xt2, . . . xtn} taken from
observations of some phenomenon, usually at equally spaced time intervals. The
subscript t is referred to as time, n denotes the length of the time series and xt

is assumed to be real. The main purpose of time series analysis is to understand
the underlying mechanism that generates the observed data and, in turn, to fore-
cast future values. We assume that the generating mechanism is probabilistic and
that the observed series {x1, x2, . . . xt, . . .} is a realization of a stochastic process
{X1, X2, . . . Xt, . . .}, i.e., a sequence of random variables. In the following the term
time series refers both to observed data and stochastic process, in formulas contex-
tually distinguished by lower and upper case, respectively. Generally a time series
consists of components like:

- trend, the long-term component representing growth or decline over an ex-
tended period of time

- seasonal component, annually repeating pattern of changes constrained within
the most natural periodicity

- cyclical component, a wavelike fluctuation around the trend

- residuals, usually stochastic remains after deterministic components removal

2



In practice, when modelling typical time series the first three (classes of) compo-
nents are picked up by regression (mostly by so-called OLS - ordinary least squares
- regression procedure) and the residuals are subjected to analysis known as Box–
Jenkins methodology that covers a large family of linear models such as autore-
gressive (AR), moving average (MA), integrated ARMA (ARIMA) and the like.
There is also a far larger family of nonlinear models, that become popular in recent
years. The stages of analysis suggested for linear models are generally applicable
with nonlinear ones too, and can be briefly summarized:

- Model specification. Using various summary statistics, decide on a class of
models to be used for a particular data set and also approximately the number
of lags required.

- Model estimation. Estimate the parameters of the selected model(s).

- Model evaluation. Use a variety of inference statistics and specification tests
to judge the quality of model and, perhaps, compare it with other models. For
example, the out-of-sample forecasting abilities of the models can be compared.
If the model is unsatisfactory, consider a new specification.

Also as mentioning later, the modelling methods tend from univariate time series
analysis to multivariate structures and gradually become an effective tool when
looking for relations among inspected processes.

The thesis is organized as follows. Section 2 introduce the multivariate analy-
sis considering linear relations within and among variables. Individually, in section
2.1 the data are pictured and some general ways of their processing are suggested,
results of which are compared and some comments are given in section 2.3. In
between, some theory and tests results are given in section 2.2, namely, first we
test the single data for the presence of stochastic trend, which may contain some
deterministic components, then our interest is turned to the presence of common
trending behaviour. For this Engle-Granger and Johansen’s tests are used and com-
mon trend variable is estimated by means of Gonzalo-Granger method. Subsequent
two-dimensional transformation helps to better understand the theory of commonly
integrated time series giving a nice geometrical application. The last subsection
gives a statistical answer to whether k time series contain the same deterministic
trend.

On the other hand, section 3 comes to multivariate modelling from the side, where
nonlinear structures in data are assumed. Following Tsay’s work, it mainly focus
on testing the null hypotheses of linearity against the alternative threshold non-
linearity, finding proper parameters for multivariate threshold autoregressive model
and finally, building this model. Some results are given, but deeper analysis and
comparison is still subject to study.

Finally, the fourth section summarizes our work.
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2 Linear modelling

Despite the quite general title, it is not the aim of this section to give a complex
overview of linear modelling methods, interested reader is referred e.g. to [8], [1]
and [4]. Our intention is rather specific as we use standard models in Box-Jenkins
methodology and underline the non-univariate approach, when looking for (linear)
relationships between two or more variables.

2.1 Data and processing approach

As mentioned in the introduction, observations at permanent GPS stations were
put to use, specifically those denoted BOR1, GOPE, POTS, HFLK and PENC were
tested for common deterministic trend (section 2.2.4) and we chose BOR1 (Poland)
for the majority of analyses in the parent section. Because of significantly lower
precision and negligible linear trend in vertical direction, we only deal here with
the two time series nt and et, each containing 730 data points. Figure 1 shows two
dimensional representation of point variation on Earth’s surface and Figure 2 time
plot for each coordinate.

Figure 1: Daily record of point’s position in a ground plane.

Figure 2: Time plot of point’s position variation.
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There’s easily seen the data following linear trend with a high level of fit. It’s a
consequence of the long-term drift of the Eurasian tectonic plate, anyway, this overt
drift is pretty suitable for applying several approaches of data processing mostly used
in mathematical statistics and for showing a plus of the proposed key procedure.

Basically, we may treat our data as (a) two one-dimensional time series or (b)
use the fact that both series just reflect the same systematic and random disturbing
effects, in other words, they are significantly interconnected.

The first approach has been and still is the most preferred way of time series
modelling in general, providing solid results in fitting. However, there is a slightly
higher danger here of modelling spurious processes and, consequently, coming to
misleading interpretations. The standard procedure includes modelling polynomial
(linear) and periodic (seasonal) trends, and then applying Box-Jenkins methodology
to cover some residual autocorrelations. This is well described in [12] and we’ll re-
enter it later in more details.

As for the (b)-group, it’s an reasonable tendency of evolution in data processing
to look for further relations and to develop more effective techniques (gratefully
using computers), such as turning from single equations to vector representation of
mathematical relations, etc. Vector regression analysis gives additional information
about modelled processes and the way they are linked together (in the form of
cross-correlation matrices, basically). We chose this modern approach as the second
alternative to be compared in conclusion.

Still staying in the last group, we should introduce a theory largely elaborated
by econometricians and given a name ”cointegration”. For brief explanation, two
non-stationary I(1) time series (means integrated of the order 1 ,having the first
differences stationary) are cointegrated, if one of their linear combinations is I(0)
and hence stationary. There are several tests for cointegration, for details and
references see [2],[5]. The most used ones was employed for proving our series to be
cointegrated, the procedures are briefly described in section 2.2.2.

2.2 Cointegration

In this section, we perform some tests at first to find out what kind of trend is present
in the data and to prove cointegration relation between our two time series. This
is essential for applying common trend methodology in the later subsection. The
latest one is an extra dose of theory, under which tests for common deterministic
trends are applied over observations of several GPS stations.

If speaking about trend, it must be understood there are deterministic and sto-
chastic trend being dealt with in time series theory and are often defined in the con-
text of autoregressive models. Time series generated by deterministic trend (DT)
model display mean or trend-reverting behaviour, while those generated by stochas-
tic trend (ST) model lack the reverting forces. An illustrative example of DT model
can be Xt = δt + εt and ST model Xt = δ + Xt−1 + εt = X0 + δt +

∑t
i=1 εi, where

εt is N(0, σ2) random process and the model of ST is called random walk (i.e., AR
parameter by Xt−1 equals unity) with drift δ. The term

∑t
i=1 εi is now called the
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stochastic trend, but we may see it may be accompanied by (any) deterministic
trend component. The key difference is that ST series can deviate from this trend
for lengthy period of time.

In our geometrical application, we have good reason to believe the trend in nt, et

has deterministic nature, however many times it is not the case.

2.2.1 Testing for stochastic trend

For identifying the stochastic trend, there are two groups of methods

- tests for unit roots

- stationarity tests.

An example of the second set of methods may be KPSS test or LM test. However,
here we focus on widely used augmented Dickey-Fuller (ADF) tests from the first
group (for details see [5], p.80). Procedure starts with choosing the order p of AR(p)
model standardly from AIC, BIC information criteria, and continues by performing
auxiliary regression

∆Xt = µ + δt + ρXt−1 + φ1∆Xt−1 + · · ·+ φp−1∆Xt−p+1 + εt , (1)

where Xt represents a variable, t is time, µ, δ, ρ, φ are parameters and ε residuals.
ρ is the parameter of interest, for which we need to compute test statistic t(ρ̂) =
ρ̂/SE(ρ̂), SE denotes standard error. The relevant null hypothesis is that ρ = 0
against alternative ρ < 0 (one-sided test), that means if t(ρ̂) > tcritical then we do
not reject H0 of unit root and hence, series contain stochastic trend (ST). Otherwise
there is no ST and we may solely think of eventual deterministic trend (DT). Note,
that test statistic does not follow standard asymptotic distribution, some critical
values are provided, for example, in [5], p.82. The procedure was executed three
times, firstly omitting both deterministic components (constant µ and trend δt),
then including only constant and finally both of them. Table 1 shows the results,
that speak clearly for the primacy of deterministic trend in both time series.

Table 1: Augmented Dickey-Fuller test.

time deterministic t(ρ̂) tcrit conclusion
series component (α = 0.05)

none -1.70 -1.95 ρ = 0 indicates ST
nt constant -1.69 -2.86 ρ = 0 indicates ST

constant & trend -7.59 -3.41 ρ < 0, DT accepted
none -0.95 -1.95 ρ = 0 indicates ST

et constant -0.96 -2.86 ρ = 0 indicates ST
constant & trend -7.19 -3.41 ρ < 0, DT accepted
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2.2.2 Testing for cointegration

Having found trending behaviour of both our time series (within the framework of
AR(p) model), it is natural to investigate whether these I(1) processes are ”com-
monly integrated”, i.e., there exist a common trend pattern. There has been devised
several methods of testing for cointegration.

The first, Engle-Granger two steps method comes from single-equation model of
two variables X1,t, X2,t and works as follows. Residuals ut from static regression

X2,t = β0 + β1X1,t + ut (2)

are used in auxiliary regression

∆ût = γ0 + ρût−1 + γ1∆ût−1 + · · ·+ γp∆ût−p + εt , (3)

and the t-test for the significance of ρ is evaluated. When ρ = 0 (that is H0,
t(ρ̂) > tcrit), ut has a unit root and thus (2) does not reflect a stationary cointegration
relationship. Otherwise, when ρ < 0, that is, when t(ρ̂) is significantly negative,
X1t, X2t are cointegrated. Some critical values are given in [5], page 217, test results
in Table 2 shows indisputable presence of cointegration. By the way, R2 (index of

Table 2: Engle-Granger testing for cointegration

regression det.component t(ρ̂) tcrit conclusion
of (α = 0.05)

et on nt constant -8.69 -3.37 cointegration
constant & trend -9.56 -3.80

nt on et constant -9.71 -3.37 cointegration
constant & trend -9.90 -3.80

determination) by the regression of nt on et is slightly higher, therefore this regression
is to be more preferred here.

Engle-Granger is useful when we analyze two time series, but it may become less
useful for increasing number of time series. This occurs, e.g, if we decide to include
the third coordinate observations. Hence, multivariate methods appear to be more
helpful.

To better understand cointegration and all associate terms, let’s describe two
time series by following VAR(1) model

[
1 δ
1 η

] [
X1,t

X2,t

]
=

[
µ∗1
µ∗2

]
+

[
ρ1 δρ1

ρ2 ηρ2

] [
X1,t−1

X2,t−1

]
+

[
ε∗1,t

ε∗2,t

]
, (4)

where δ 6= η, µ∗1, µ
∗
2 are intercept terms and ε∗1,t, ε

∗
2,t are assumed to be mutually

independent white noise error processes. Multiplying both sides with the inverse
of the left-hand side matrix and subtracting the one period lagged X t−1 from both
sides gives

∆X t = µ + ΠX t−1 + εt , (5)
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where µ and εt are functions of µ∗ and ε∗t , respectively. Interesting matrix is Π,
because when 0 ≤ ρi < 1 for i = 1, 2, Π has full rank 2, on the other hand, when
ρ1 = ρ2 = 1, the rank of Π is equal to 0. Now interesting is cointegration case, when
(for example) ρ1 = 1 and 0 ≤ ρ2 < 1, the matrix Π can be written as

Π = αβ> , (6)

where β = [1 η]> is the cointegration parameters vector. βX t is an equilibrium (or
long-run) relation between X1,t, X2,t, and the parameter matrix α reflects the speed
of adjustment toward equilibrium. Equation (5) incorporating (6) is called a vector
error correction model.

Multivariate method of testing for cointegration, proposed above, comes by con-
sidering again the VAR(p) model, more convenient if written in error correction
format

∆X t = µ + Γ1∆X t−1 + · · ·+ Γp−1∆X t−p+1 + ΠX t−p + εt , (7)

where Π contains the information on possible cointegration relations between the m
(in our case m = 2) elements of X t. If Π is close to rank deficiency, there may be
cointegration. The Johansen’s method is such a statistical method to investigate the
rank of Π (which, essentially, amounts to a multivariate extension of the univariate
ADF method). The procedure goes like this. First, we perform regressions

∆X t = a0 + a1∆X t−1 + · · ·+ ap−1∆X t−p+1 + r0t ,

X t−p = b0 + b1∆X t−1 + · · ·+ bp−1∆X t−p+1 + r1t , (8)

then construct the matrices S00, S10, S11, S01 of (m×m) from

Sij =
1

n

n∑
t=1

ritr
>
jt for i, j = 0, 1 . (9)

The next step is to solve the eigenvalue problem |λS11−S10S
−1
00 S01| = 0 which gives

the eigenvalues λ̂1 ≥ · · · ≥ λ̂m and the corresponding eigenvectors β̂1 through β̂m.
Now, a test for the rank of Π can be performed by testing how many eigenvalues
λi equal zero. The first test statistic (which is a likelihood ratio test) λtrace =
−n

∑m
i=r+1 ln (1− λ̂i) tests the null hypothesis of at most r cointegration relations

against the alternative there are more of them, while the second test statistic λmax =
−n ln (1− λ̂r) can be used to test the null of r − 1 against r cointegration relations
(vectors). H0 shall not be rejected if test statistic is smaller than critical value.
Table of critical values can be found, e.g., in [5] on page 224, our case evaluation is
summarized in Table 3.

Having found 1 cointegration relation [nt et]β̂1, it’s not a bad idea to plot it
(see Figure 3a) for later comparison. Anyway, when there are r cointegration rela-
tions, among m variables, there has to be (m− r) independent common stochastic
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Table 3: Johansen’s tests for cointegration (m = 2)

r test statistic λcrit(m− r) conclusion
(α = 0.05)

0 λtrace 127.36 17.95 H0 rejected
1 λtrace 1.08 8.18 H1 rejected, r=1 cointegr.vector
1 λmax 126.28 14.90 H0 rejected
2 λmax 1.08 8.18 H1 rejected, r-1=1 cointegr.vector

trends in the system. Gonzalo and Granger proposed a method to estimate the sto-
chastic trends, procedure that use the Johansen’s but differs in eigenvalue problem
|λS00−S01S

−1
11 S10| = 0, solution of which has the same eigenvalues λ̂i but different

eigenvectors ŵ1, . . . , ŵm. Because in our case r = 1, only one common stochastic
trend variable can be constructed (using eigenvector ŵr+1), that is [nt et]ŵ2 , plotted
in Figure 3b.

a) b)

Figure 3: a) Cointegration relation between nt, et, and b) common stochastic trend.

2.2.3 Geometrical aspect of common trend

Once having found cointegration, it’s naturally leading us to investigate a common
trend ([11]). We look for linear combination

yt = γ1nt + δ1et

xt = γ2nt + δ2et (10)

such that y represents a common trend direction and xt is a stationary trend-free
variable, orthogonal to yt. In the light of our geometrical application, it’s easy
to rewrite a general common trend problem into familiar transformation (in 2D
cartesian system)

yt = nt cos α + et sin α

xt = −nt sin α + et cos α (11)
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Figure 4: Transformation into common trend direction

as shown in Figure 4. The angle α can be determined either from analysis of sto-
chastic trend

et = a0 + b0nt , tan α = b0 (12)

or analysis of deterministic trend starting at linear regression

nt = a1 + b1t + u1,t , et = a2 + b2t + u2,t , (13)

where t denotes time and a, b regression parameters. If we place (13) into (11) and
focus on series xt, which is supposed to be trend-free, then

xt = −(a1 + b1t + u1,t) sin α + (a2 + b2t + u2,t) cos α ,

xt = (a2 cos α− a1 sin α) + (b2 cos α− b1 sin α)︸ ︷︷ ︸
0

t + (u2,t cos α− u1,t sin α)(14)

(linear trend term in xt is eliminated), so

tan α =
b2

b1

. (15)

All right, we have got a new couple of time series yt, xt. At this point it is more
than interesting to realize that Figures 3 and 5 show the same variables. Figure 5 is
situated in section 2.3 where the modelling procedure continues and come to results.
Next subsection is a little cutaway showing a useful test for common deterministic
pattern on multivariate time series.

2.2.4 Testing for common deterministic trend slopes

In section 2.2.1 we tested our time series separately for the presence of stochastic
trend, which might contain constant and linear deterministic component. After
modelling both of the components, tests showed no random-walk behaviour in each
data set. Now it is of interest to examine if two or more of such a trend-stationary
time series have the same slope. More concretely, do all the five concerned points
(realized by permanent stations) move to the north with the same upward-moving
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trend? The question includes also the west-east direction and the velocity in the
resultant too.

Such a hypothesis can be written as linear restrictions on the slope parameters
across the series and we can apply the multivariate linear trend tests [6]. Consider
the multivariate trend model

z1,t = µ1 + β1t + u1,t

z2,t = µ2 + β2t + u2,t
...

zk,t = µk + βkt + uk,t

(16)

that can be compactly written as zt = µ + βt + ut, where µ and β are classical
constant and linear trend parameters, u denotes residuals and k is the number of
time series, in our case k = 5. We are interested in testing hypotheses of the form

H0 : Rβ = r , H1 : Rβ 6= r, , (17)

where R is q × k matrix and r is a q × 1 vector of known constants. The linear
hypotheses of (17) are quite general, they include linear hypotheses on slopes within
given trend equations (q = k− 1) as well as joint trend hypotheses across equations
(q = k). According to [6] we apply two F-tests, both test statistics are functions of
the following HAC (heteroskedasticity autocorrelation) variance covariance matrix
estimator. Let µ̂ and β̂ denote the stacked single equation OLS estimates and
ût = zt − µ̂− β̂t be the residuals. Define

Ω̂HAC = Γ̂0 +
n−1∑
j=1

(1− j

L
)(Γ̂j + Γ̂

>
j ) , (18)

which is the Bartlett kernel estimator, where Γ̂j = 1
n

∑n
t=j+1 ûtû

>
t−j and L is the

truncation lag or bandwidth. Usually a consistent Ω̂HAC is needed, yet [6] offers an
alternative, where L = n. Although it does not result in consistent estimator, valid
testing is still possible because of asymptotic proportionality and moreover it has
certain advantage coming from the choice of bandwidth. It holds that

Ω̂L=n =
2

n2

n∑
t=1

ŜtŜ
>
t , (19)

where Ŝt =
∑t

j=1 ûj. It is also convenient to express an element of β̂ as

β̂i =

(
n∑

t=1

t̃ 2

)−1 (
n∑

t=1

t̃zi,t

)
for i = 1, 2, . . . , k , (20)

where t̄ = 1
n

∑n
t=1 t and t̃ = t− t̄. Now the first of test statistics can be defined

F1 = (Rβ̂ − r)>
[
R(

n∑
t=1

t̃ 2)−1Ω̂L=nR
>
]−1

(Rβ̂ − r)/q . (21)
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Following [6] we also consider an alternative to Ω̂L=n which is constructed using
t̃ût instead of ût. Because t̃ût is not a vector of stationary time series, establishing
consistency of HAC estimator would be difficult if even feasible, yet again if we use
L = n, the asymptotic behaviour of the HAC estimator can be derived. We can
write

Ω̃L=n =
2

n2

n∑
t=1

S̃tS̃
>
t , (22)

where S̃t =
∑t

j=1 (j − t̄)ũj, and then the second test statistic is

F2 = n(Rβ̂ − r)>
[
R(

1

n

n∑
t=1

t̃ 2)−1Ω̃L=n(
1

n

n∑
t=1

t̃ 2)−1R>
]−1

(Rβ̂ − r)/q . (23)

The null hypothesis in (17) is rejected if test statistic F1 (F2) exceeds critical value
given for q restrictions in [6], Table 3 (Table 2, alternatively). It is worth noting that
due to practical reasons indices of the F-statistics has been swapped in our work.

The asymptotic distribution theory for these F statistics is nonstandard and was
developed for the case where the errors are covariance stationary. Simulation evi-
dence reported by [6] suggests that the F -tests suffers much less from over-rejection
problem caused by strong positive serial correlation than the compared standard
alternative, whereas the power of F -s is slightly lower. Finite sample simulation
evidence in [6] also suggested that the performance of the tests are improved when
Ω̂ estimator is computed using VAR(1) prewhitening. However, this we do not do
here.

The standard alternative to F1 and F2 is a Wald test based on consistent Ω̂HAC

estimator, which uses the same Bartlett kernel. For Ω̂HAC to be consistent, the
bandwidth L must increase as the sample increases but at the slower rate. As
referred in [6], the rate 3

√
n minimizes the approximate mean square error for Ω̂ and

considering this in (18), the Wald test is defined as

W = (Rβ̂ − r)>
[
R(

n∑
t=1

t̃ 2)−1Ω̂HACR>
]−1

(Rβ̂ − r) . (24)

Asymptotic distribution of the Wald test is χ2 with q degrees of freedom.

For reference we recommend to see an interesting application of this theory in [7]
too.

Back to our application, we have got 5 time series from permanent stations de-
noted in international framework as BOR1(Poland), GOPE(Bohemia), POTS(Germany),
HFLK(Austria), PENC(Hungary) and they make vector zt in respective order. Ta-
ble 4 contains OLS estimates of parameter β in units mm/year for the north and
east coordinate time series nt, et and even for common trend direction time series
yt obtained from (11) with (15).
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Table 4: Trend parameter estimates [mm/year]

point: BOR1 GOPE POTS HFLK PENC

β̂nt 14.2 14.7 14.4 13.4 12.2

β̂et 22.3 23.1 21.1 21.5 23.9

β̂yt
26.4 27.4 25.5 25.3 26.9

By defining the q × k matrix R and q × 1 vector r

R =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 , r =




β̂1

β̂1

β̂1

β̂1


 ,

the null hypothesis (17) says that the first (reference) time series has the same
slope as the rest of time series. Moving the zero column in R and filling r with
corresponding parameter, slopes of other series are tested.

We also consider a joint test, when q = k, R is k-dimensional identity matrix and
r contains trend parameter of an average time series, n̄t = 1

k

∑k
j=1 (nt)j for instance.

Test results are collected in Table 5 and 6, critical values for F -tests are given in
a separate line bellow. Every Wald test statistic is provided with p-value, which
(given null hypothesis is valid) represents a probability that we get the particular
value or even the more contradictory to tested hypothesis, in other words it expresses
a probability the trend slopes are statistically the same.

First to conclude, all the tests confirmed common deterministic trend in north
direction coordinate for all the series except for PENC. Although the joint test for
q = 5 did not reject the null hypothesis due to quite a large set of variables, from the
five tests within equations it is obvious that this last slope does not correspond to the
others. As for other two variables, et and yt, no significant deterministic relation was
found. Therefore next we took foursomes into account (Table 6) removing seemingly
most troublesome series, and observed how it changed the test statistics. Removing
PENC accentuated the common trend in nt, and pointed slightly at promises in yt.
It is useful now to repeat that slope of yt represents a velocity in the direction a
particular point moves, and does not contain information about direction.

At last, we tested triads, of which two appear quite interesting and are summa-
rized in Table 6. First (BOR1, POTS, HFLK) was found to have statistically the
same linear trend significant for every direction, though the p-value of Wald test
leaves some space for questions. In short and simple, these three points move in the
same direction and at the same speed. Second (BOR1, GOPE, PENC) shows no
significant harmony in direction, yet it indicates a common velocity.

Honestly, we don’t know the cause of this minor effects in tested parameters, there
may be some speculations uttered about local instability of given points in particular
direction or some residual systematic components in time series that weren’t taken
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Table 5: F1, F2 and Wald test for all 5 time series and selected triads.

station of
reference

trend

F1 F2 W
nt et yt nt et yt nt p-value et p-value yt p-value

BOR1 17.2 96.6 501.4 16.7 57.7 281.0 0.82 0.935 2.85 0.583 13.88 0.008
GOPE 34.5 68.6 75.4 29.0 95.7 64.6 1.43 0.839 4.73 0.216 3.19 0.526
POTS 22.6 215.1 314.1 19.0 209.3 171.4 0.94 0.919 10.34 0.035 8.46 0.075
HFLK 32.3 159.6 415.7 31.3 188.6 215.8 1.55 0.818 9.31 0.054 10.66 0.031
PENC 143.2 338.8 526.3 198.0 170.0 290.4 9.78 0.044 8.39 0.078 14.34 0.006

Joint 21.5 218.7 423.0 24.5 127.2 218.9 1.50 0.913 7.85 0.164 13.51 0.019
Critical value for q=4 and α=5%: 46.8 (F1), 43.8 (F2) and for joint test(q=5): 70.1 (F1), 78.3 (F2)

BOR1 0.6 1.4 1.5 1.0 3.2 3.8 0.03 0.988 0.08 0.962 0.09 0.954
POTS 2.4 4.8 3.0 3.8 6.5 2.9 0.10 0.953 0.16 0.923 0.07 0.964
HFLK 7.9 14.9 11.2 7.9 9.0 7.0 0.19 0.907 0.22 0.895 0.17 0.917

Joint 6.0 33.1 16.5 4.6 33.2 12.8 0.17 0.982 1.23 0.746 0.48 0.924
BOR1 16.4 27.8 4.8 27.9 22.6 5.0 0.69 0.709 0.56 0.756 0.12 0.940
GOPE 9.5 82.6 4.4 24.9 78.3 3.1 0.61 0.735 1.93 0.381 0.08 0.963
PENC 124.2 18.7 4.6 137.7 14.7 4.4 3.40 0.183 0.36 0.834 0.11 0.948

Joint 30.8 117.9 46.4 33.8 129.3 26.4 1.25 0.740 4.79 0.188 0.98 0.807
Critical value for q=2 and α=5%: 40.7 (F1), 43.8 (F2) and for joint test(q=3): 68.7 (F1), 73.4 (F2)

Table 6: Joint test for common trend slope of 4-time-series set.

Station
removed
from set

F1 F2 W
n e y n e y n p-value e p-value y p-value

POTS 25.1 295.0 149.4 36.7 131.4 94.6 1.81 0.771 6.49 0.166 4.67 0.323
HFLK 24.5 120.6 252.7 23.4 119.6 157.3 1.15 0.886 5.91 0.206 7.77 0.100
PENC 11.5 119.3 504.4 12.0 48.4 266.9 0.59 0.964 2.39 0.665 13.18 0.010

Critical value for joint test (q=4 and α=5%): 69.3 (F1), 76.7 (F2)

into account in model specification and which might cause spurious estimates. Nev-
ertheless, although the data visibly show significant linear trend behaviour caused
by tectonic plate drift, the tests rejected common deterministic trend for two of the
observed points. It is subject to study, why this happened.
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2.3 Last comment on computation and results

Here we start at the point of getting common trend direction time series and nat-
urally the trend-free as well. The next step is to model it the same way as two
univariate series (the a) approach), at first by subtracting linear trend and sea-
sonal component, then by testing it for residual auto-correlations and applying Box-
Jenkins methodology. For comparing purposes we decided to include only annual
seasonality and exclude any cyclical component. Figure 5 shows both series fitted by
corresponding deterministic model. Correlogram of residuals confirmed the presence

Figure 5: New series yt and xt fitted by linear and/or cyclical trend.

of significant correlations. This small residual dependencies may further be modelled
by ARMA,ARCH, GARCH or some kind of TAR models, however here we simply
employ the more standard AR(p) (autoregressive model of order p) defined

yt = Φ0 + Φ1 yt−1 + Φ2 yt−2 + · · ·+ Φp yt−p + εt , (25)

where Φi /i = 1, ...p / are parameters, εt white noise. The order p is chosen either
from plot of residuals’ variances (Fig. 6a, watch the relative steepness) or infor-
mation criteria (Fig. 6b, find a minimum), where AIC is Akaike and BIC Schwarz
inf.criterion. Taking both results into account, there’s no doubt yt, xt should be
modelled by AR(2) and AR(4), respectively.

Model of yt, xt is ready, schematically ymt , xmt = trend + seasonality + AR(p),
however, this is not a final point we are supposed to come to. The new, model
series must be transformed back to (n, e) system. If (11) is written in matrix nota-
tion, transformation matrix Mn,e→y,x is clearly orthogonal and therefore a backward
transformation can easily be performed

(
nmt

emt

)
=

(
cos α − sin α
sin α cos α

)(
ymt

xmt

)

(because My,x→n,e = M−1
n,e→y,x = MT

n,e→y,x). For visual review Figure 7 joins
original data with the model.

One of the two cardinal purposes of data processing (that’s: to understand and be
able to forecast) is the next values prediction (Figure 8). It can be utilized well for
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a)

b)

Figure 6: Order p determination: a) residuals’ variation, b) information criteria.

Figure 7: Original time series (black) and model (grey).

comparing the methods. We did it. Having computed model values for next 5 days
and got the corresponding GPS measurements, we decided to quantify prediction
efficiency by these measures:

mean square error mse =
1

k

k∑
t=1

(realt −modelt)
2 , (26)

mean percentage error mpe =
1

k

k∑
t=1

realt −modelt
realt

100% , (27)

where k is a number of predicted time points.

Now we finally come to results. First to mention are the parameters of determin-
istic model, i.e trend and seasonality, shown in Table 7.

These results are approximately the same for all three methods (excepting those
relating to yt, xt, of course), and serve for data description. There’s pretty seen the
quantity of Eurasian tectonic plate long-term drift (25.2mm per year) and the effect
of seasonal forces in particular direction, too.
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Figure 8: Prediction

Table 7: Deterministic model parameters

What is more interesting is certainly in Table 8, which contains results from
each method in separate line, namely mean square and mean percentage error of
predicted values per variable. This is accompanied by the order of autoregressive
model, properly chosen according to information criteria. Mse and mpe speak

Table 8: Mean square and mean percentage error of predicted values.

positively for the method that respects the presence of common trend.
On top of that, if outliers are removed using criterion of triple standard deviation

(1% confidence level), better accuracy is attained (Table 9).
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Table 9: mse and mpe of predicted values after removing outliers.
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3 Nonlinear modelling

In the past, evolution of time series analysis made chiefly for linear models construc-
tion - theoretically as well as practically. There were reasons for it: nice theoretical
results, possibility to apply variety of achievements grown up on the cultivated fields
of linear regression models, relatively simple numerical algorithms and satisfactory
practical results. However, despite all this arguments we cannot deny the fact, that
many disciplines deals with mechanisms and links of obviously nonlinear character.
That’s why nonlinear modelling attracts more and more attention. Again, as with
linear models it is not the aim to categorize the models here, a very brief overview
can be found in [8], pages 5-7, or [4], pages 191-203. Instead, we want to introduce a
new trend in modelling that the linear and nonlinear one have in common. The talk
is about a multivariate approach. It is being applied to a class of regime-switching
models - threshold autoregressive model (TAR) - which is fairly simple and widely
used nowadays. For illustration, regime-switching idea may effectively be utilized
with daily river flow rate time series which reflects two states of snow in the moun-
tains according to outside temperatures (melting/solid). Of course, the examples
are many more, and we presume, that processes influencing our observations may
have such nonlinear character.

In the next subsections two components (north and east) of point’s position (from
permanent GPS observations) in horizontal coordinate system are taken to obtain
bivariate time series, which consequently are tested for nonlinearity and modelled
using bivariate threshold autoregressive model. Whole procedure, of course, can
easily be generalized to more than two-variate series.

3.1 Model introduction

May we have a time series of n time-points, there are several ways to model it. One
large family of models that are strongly suitable for modelling stochastic processes,
are those arising from Box-Jenkins methodology such as ARMA etc. We will be
interested in autoregressive (AR) models, defined

yt = Φ0 + Φ1 yt−1 + · · ·+ Φp yt−p + εt , (28)

where yt will denote a variable in general, Φ-s are parameters of an AR model and
εt represents residuals with white noise properties. This is linear model and as
such, it may fit only linear dependencies. But what if we know our time series are
nonlinear (excluding common trend and seasonality) but piecewise linear, changing
it’s behaviour by activation of some factor.

We get threshold autoregressive model (TAR), e.g.

yt =

{
Φ

(1)
1 yt−1 + · · ·+ Φ

(1)
p yt−p + ε

(1)
t if zt−d ≤ r,

Φ
(2)
1 yt−1 + · · ·+ Φ

(2)
p yt−p + ε

(2)
t if zt−d > r,

(29)

where zt is a threshold variable, r is a threshold and their relation delimits con-
stituent regimes of the model. Letter d denotes time lag (delay). Because there is
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often a need to process more than a single vector of measurements at once (some-
times given with some explanatory time series), we will speak about multivariate
TAR model

yt = Φ
(j)
0 +

p∑
i=1

Φ
(j)
i yt−i + ε

(j)
t if rj−1 < zt−d ≤ rj, (30)

where yt = (y1t . . . ykt), Φ
(j)
0 is constant term for regime j, and ykt denotes kth

univariate time series nested in yt.

As for yt I put to use GPS observations at permanent station GOPE which are
given as point coordinates in horizontal coordinate system (n, e, v - north, east
and vertical component), in our work just only nt and vt are played with (see Figure
9). Usually the components have been processed separately, yet this means a risk

Figure 9: Two vectors of GPS observations of length n = 730 days

of some information loss, as they are obviously somehow correlated. That’s why we
have focused on multivariate modelling.

Now we have data, type of model and we assume that the threshold variable z
is known, but the delay d, the order p of AR model and threshold r are not (for
simplicity we restrict the case to 2 regimes).

The goal is threefold:

1. To find proper order p of AR model.

2. To make sure, that time series are not linear using test developed by prof.
Tsay.

3. To choose the best delay and threshold values, and consequently to build up
the final shape of multivariate model.

The order p selection is performed in a classical way on every data set either by

- using a Levinson-Durbin estimation procedure, where for each p = 1, . . . pmax

an covariance matrix is computed and their determinants are plotted to find
the significant stop of decreasing tendency, or
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- employing three information criteria AIC, BIC, HQIC which are to be mini-
mized by the most appropriate order value.

For illustration see Figure 6 or please, refer to [12].

3.2 Testing for nonlinearity

Null hypothesis H0: yt is linear.
Alternative hypothesis H1: yt follows a threshold model.

Following [13], we utilize standard least square regression framework:

yt = AtΦ + εt, t = h + 1, . . . n (31)

where h = max(p, d), At =
(
1 yt−1 yt−2 . . . yt−p

)
is regressor and Φ denotes

parameter matrix. If H0 holds, then least square estimates are useful, otherwise the
estimates are biased under H1.

Now, let the ordering of the threshold variable z be rearranged increasingly so
that z(i) is the smallest element of S = {zh+1−d, . . . zn−d} and t(i) is the time index
of z(i). Therefore z(i) = zt(i) and the autoregression is

yt(i)+d = At(i)+dΦ + εt(i)+d, i = 1, . . . n− h . (32)

It is important to see that the dynamics of the yt series has not changed (i.e.
the independent variable of yt is At for all t). What has changed is the ordering by
which the data enter the regression setup. This means an effective transformation
of threshold model into a changepoint problem.

To detect model change consider the idea:
If yt is linear, then recursive least squares estimates of the arranged regression
is consistent so that the predictive residuals approach white noise (consequently,
predictive residuals are uncorrelated with the regressor At(i)+d). Let

η̂t(m+1)+d =
yt(m+1)+d −At(m+1)+dΦ̂m[

1 + At(m+1)+dV mA>
t(m+1)+d

]1/2
(33)

be the standardized predictive residual of regression (32), where

V m =

[
m∑

i=1

A>
t(i)+dAt(i)+d

]−1

and Φ̂m is the estimate of arranged regression (32) using data points associated with
the m smallest values of zt−d.

Next, there comes a regression

η̂t(l)+d = At(l)+dΨ + wt(l)+d, l = m0 + 1, . . . n− h . (34)
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where m0 denotes the starting point of recursive least squares estimation (m0 ≈
3
√

n). The problem of interest is to test the hypothesis H0: Ψ = 0 versus H1:
Ψ 6= 0 in (34). Tsay [13] designed a test statistic

C(d) = [n− h−m0 − (kp + 1)]× [ln(det S0)− ln(det S1)], (35)

where

S0 =
1

n− h−m0

n−h∑

l=m0+1

η̂>t(l)+dη̂t(l)+d,

S1 =
1

n− h−m0

n−h∑

l=m0+1

ŵ>
t(l)+dŵt(l)+d,

and ŵt is the least square residual of regression (34). Under the null that yt is linear
(and some regularity conditions), C(d) is asymptotically a χ2 random variable with
k(pk + 1) degrees of freedom. If C(d) < χ2

df , we do not reject the null hypothesis.

Table 10: Results of testing for nonlinearity

Note. The test is most powerful, if d is correctly specified.

3.3 Model building and results

First we aim at choosing the best values of delay and threshold.

a) One way is to apply conditional least squares estimation.
Assume that p and s (number of regimes) are known, then parameters of model (for
now a bit simplified)

yt =

{
AtΦ1 + Σ

1/2
1 at if zt−d ≤ r,

AtΦ2 + Σ
1/2
2 at if zt−d > r,

(36)
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where at = (a1t . . . akt) ∼N(0, I),
are (Φi,Σi, r, d). Putting the possible values of r and d into grid {1, 2, . . . d0} ×
{rmin, rmin + step, . . . rmax} model (36) reduces to two separated multivariate linear
regressions from which the least squares estimates of Φi and Σi (i = 1, 2) are readily
available:

Φ̂i(r, d) =




(i)∑
t

A>
t At



−1 


(i)∑
t

A>
t yt


 (37)

Σ̂i(r, d) =

∑(i)
t

(
yt −AtΦ̂

∗
i

)> (
yt −AtΦ̂

∗
i

)

ni − k
, (38)

where
∑(i)

t denotes summing over observations on regime i, Φ̂
∗
i = Φ̂i(r, d), ni is

number of data points in regime i and k (k < ni) the dimension of At. It becomes
clear that conditional least squares estimates of r and d should minimize the sum
of squares of residuals

(r̂, d̂) = arg min
r,d

S(r, d) (39)

where S(r, d) = (n1 − k)Tr[Σ̂1(r, d)] + (n2 − k)Tr[Σ̂2(r, d)].

Figure 10: Density, contour and 3D plot of S(r, d); lower axis represents delay d in
days, side axis r ∈ 〈−2.6, 3.0〉 [mm]

Table 11: Results of conditional estimation

b) Besides this, we may apply Akaike information criterion AIC to the same grid
r × d.
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In fact, it comes along with and supplement the least squares estimation procedure
and, of course, there are other parameters defining the multivariate threshold model
that could be selected by the criterion

AIC(p, s, d, r) =
s∑

(j=1)

[nj ln(det Σ̂j) + 2k(kp + 1)] (40)

with

Σ̂j =
1

nj

(j)∑
t

ε̂
(j)>
t ε̂

(j)
t ,

where nj is the number of data points in regime j,
∑(j)

t denotes summing over

observations in regime j and ε̂
(j)
t are residuals.

Figure 11: AIC mapped over grid r × d, r ∈ 〈−2.6, 3.0〉 [mm], d ∈ {1, 2 . . . 10}
[day]

Figure 12: AIC vs. threshold grid index for d = 3

There’s easily seen a pretty good agreement among the methods, however still
partial and shall be the subject to further study. Basically, we prefer those values
confirmed by the majority of demonstrated procedures, rather smaller than higher
values... but of course, it should depend on practical expectations most.
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Table 12: Results of AIC model selection

Respecting all previous results, the final shape of model has been selected, built
up and is shown in Table 13 and Table 14 and visually compared with original
data in Figure 13. However, decision is not so easy and some comparisons to other
methods and confrontation with practical purposes are needed.

Table 13: Model variables and characteristics

Table 14: Parameters and covariance matrices

Figure 13: Visualized fit of the built model. Original data are represented by dotted,
model by joined plot of a) north and b) east component.

Here we have shown one possible way of processing of geodetic data, that may
be extended to three-or-more-regimes models and models including some exogenous

25



variables, but what should be considered about the proposed procedure as the major
contribution to time series analysis applied in geodesy is treating the data as set
of mutually depending variables effectively describable by multivariate modelling
approach rather than by the univariate one.
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4 Conclusion

Multivariate modelling methods count doubtlessly among the modern approaches in
time series processing, allowing us to capture wider area of causalities, which are of
our interest. Supported by powerful data collecting technologies such like GPS, we
are able to model relations of time space entities, namely the varying geometrical
positions of points. They reflects processes that interact locally, regionally and
globally. We concentrated here on permanent GPS observations, that serves for
regular monitoring of the Earth’s crust kinematics (and for other research purposes).
The time series of north and east horizontal coordinates clearly show the long-term
drift of Eurasian tectonic plate as linear deterministic trend, which is common to
every point in the area. Besides this, the time series visibly reflect other effects,
both common and unique. They can be mutually distinguished by the methods of
multivariate modelling as proposed in this thesis.

We have introduced some contemporary linear modelling techniques as well as
nonlinear ones, most of which originates from econometrics. Firstly the statisti-
cal tests to prove the presence of stochastic or even deterministic trend, then the
presence of a common trend, in other words, we have shown that two time series
of one point’s coordinates are commonly integrated, so that they can be decom-
posed to stationary time series of cointegration relation and common trend series.
This decomposition were also geometrically demonstrated by two-dimensional lin-
ear transformation and utilized for further modelling in order to compare a forecast
performance with alternatives, classic multivariate and univariate method. There
was also performed a test for common deterministic trend applied to particular
coordinate over five points, i.e., north, east and common trend direction.

As for nonlinear models, we utilized multivariate threshold autoregressive model,
restricted to two regimes and applied to trendy ground coordinates time series as in
previous. It is easily extendable to more than two variables and regimes as well.
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5 Theme and propositions of the thesis project

Theme of the thesis :

Contemporary methods of time series modelling and their application
in geodesy

Propositions of the thesis :

• Cointegration

– Testing for common trends

– Transformation into common trend direction

• Testing for common periodic components

• Multivariate threshold autoregressive model

– with exogenous threshold variable

– using aggregation operators

• Threshold cointegration

• Multivariate autoregressive modelling using copulas

• Application in geodesy
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6 Objective and prospective contribution

Thesis objective:

To examine common behaviour of multivariate set of data by statistical
tests and to utilize new progressive procedures in their processing,

focusing on permanent GPS observations

Prospective contribution:

• Incorporating the theory of cointegrated processes into geodetic data models
should reveal more of the character of surveyed phenomenons.

• Tests for common features should mathematically support the specialist’s
opinion about data when choosing the most appropriate model.

• Multivariate approach has an obvious ambition to be the preferred way of
automatized processing on computers.

• Statistical tests helps to reveal nonlinearity in time series behaviour so that
threshold models can manage some large ”awkward” shocks, for instance.

• Joining the idea of cointegration and threshold should in proper case improve
performance of final model.

• The new theoretical approach that make use of copulas is expected to widen
a specialist’s horizon of promising modelling methods.

• All the proposed theories are new to implement useful procedures into
geodetic data processing.
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